
POLE-PLACEMENT CONTROL

Topics Covered
• Controllability

• State­feedback control

• Companion matrices.

• Pole­placement control design

• Control design for higher order systems

Prerequisites
• Filtering laboratory experiment.

• Stability Analysis laboratory experiment.

• Rotary Pendulum Modeling laboratory experiment.

QUBE­SERVO 2 Workbook ­ Student v 1.4



1 Background
1.1 State-Feedback Control
The standard state­space representation of a multi­input multi­output (MIMO) continuous linear­time invariant (LTI)
system with n state variables, r input variables, and m output variables is

ẋ(t) = Ax+Bu (1.1)

and
y(t) = Cx(t) +Du(t) (1.2)

where x ∈ ℜn×1 is the vector of state variables, u ∈ ℜr×1 is the control input vector, y ∈ ℜm×1 is the output vector,
A ∈ ℜn×n is the system matrix, B ∈ ℜn×r is the input matrix, C ∈ ℜm×n is the output matrix, and D ∈ ℜm×r is the
feed­forward matrix.

The state­feedback control of a system is shown in Figure 1.1. Let u be a state feedback control law of the form

u = −Kx (1.3)

where K ∈ ℜm×n is the feedback gain. Applying this to Equation 1.1 gives the closed­loop system

ẋ = Ax−BKx = (A−BK)x. (1.4)

Figure 1.1: State­feedback block diagram

The state vector x of the rotary pendulum system is defined

x =
[
θ α θ̇ α̇

]T
. (1.5)

The reference signal includes the desired rotary arm position, θr and is defined

xref =
[
θr 0 0 0

]T
(1.6)

and the control strategy used to balance the pendulum (and track the rotary arm setpoint) is

u = K(xref − x) = kp,θ(θr − θ)− kp,αα− kd,θ θ̇ − kd,αα̇. (1.7)
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1.2 Controllability
If the system is unstable, we might be able to design a state­feedback controller to stabilize it. Even if the system is
stable, we may still want to regulate the performance of the system according to some design specifications (e.g.,
final state, rate of convergence, and settling time). These are possible if the system is controllable. By controllable,
we mean that for any initial state vector xa and any desired final state xb, there exists a control input u that can steer
the state of the system from xa to xb in finite time [1]. Otherwise, we say that the system is uncontrollable. Note that
the definition does not require u to be bounded.

To check if the system is controllable, we can compute the rank of the Controllability matrix

C =
[
B AB A2B · · ·An−1B

]
(1.8)

where n is the dimension of the state vector x. Then, we say that the linear system Equation 1.1 or, equivalently,
the pair (A,B) is controllable if and only if rank{C} = n. Otherwise, we conclude that the linearized system (or, in
other words, the pair (A,B)) is uncontrollable.

1.3 Pole Placement
If (A,B) is controllable, we can use the state­feedback to place the poles at desired locations, e.g. in the left half of
the s­plane. Thus we can find a gain K for the closed­loop system in Equation 1.4 to obtain a desired characteristic
equation

sn + an−1s
n−1 + · · ·+ a1s

1 + a0 = 0

where ai ∈ ℜ for i ∈ {0, 1, · · · , n− 1}.

To illustrate how to design K to obtain desired pole location, i.e. desired characteristic equation, consider the
following example:

A =


0 1 0

0 0 1

3 −1 −5

 , B =


0

0

1

 .

The characteristic equation of the open loop system is

|sI −A| = s3 + 5s2 + s− 3 = 0.

Its open loop poles are at {−4.64,−1, 0.65}, therefore the system is unstable. To obtain the closed­loop poles
{−1,−2,−3}, the desired characteristic equation is

(s+ 1)(s+ 2)(s+ 3) = s3 + 6s2 + 11s+ 6 (1.9)

Applying the state­feedback control u = −Kx with the gain K =
[
k1 k2 k3

]
the closed­loop system becomes

A−KB =


0 1 0

0 0 1

3− k1 −1− k2 −5− k3


The characteristic equation of A−KB is

s3 + (k3 + 5)s2 + (k2 + 1)s+ (k1 − 3) (1.10)

Equating the coefficients of Equation 1.10 with the desired polynomial in Equation 1.9

k1 − 3 = 6

k2 + 1 = 11

k3 + 5 = 6
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Solving for the gains, we find that a gain of K =
[
9 10 1

]
is required to move the poles to their desired location.

1.3.1 Companion Matrix

If (A,B) is controllable and a single­input system, i.e. B ∈ ℜn×1, then A is similar to a companion matrix. Let the
characteristic equation of A be

sn + ans
n−1 + · · ·+ a2s

1 + a1 = 0

where ai ∈ ℜ for i ∈ {1, 2, · · · , n}. Then the companion matrices of A and B are

Ã =



0 1 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

−a1 −a2 · · · −an−1 −an


(1.11)

and

B̃ =


0
...

0

1

 (1.12)

The companion matrices can be found using the matrix transformation

W = T T̃−1

where T is the controllability matrix defined in Equation 1.8 and

T̃ =
[
B̃ B̃Ã . . . B̃Ãn

]
.

Then
Ã = W−1AW

and
B̃ = W−1B.

1.3.2 Design Procedure Summary

The procedure to design a gain K for a controllable (A,B) system can be generalized as follows:

Step 1 Find the companion matrices Ã and B̃. Compute W = T T̃−1.

Step 2 Apply the control law u = −K̃x to the companion system (Ã, B̃), given in Equation 1.11 and Equation 1.12,

Ã− B̃K̃ =



0 1 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

−a1 − k1 −a2 − k2 · · · −an−1 − kn−1 −an − kn


. (1.13)

Compute the control gain, K̃, that assigns the poles of Ã− B̃K̃ to the desired locations.
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Step 3 Find K = K̃W−1 to get the feedback gain for the original system (A,B).

Remark: It is important to do the K̃ → K conversion. Remember that (A,B) represents the actual system while
the companion matrices Ã and B̃ do not.

1.4 Time-Domain Specifications for Higher Order
Systems

The rotary inverted pendulum system has four poles. However, if two of the closed­loop poles are chosen to be
closer to the imaginary axis (typically by a factor equal or greater than four) than the remaining poles, the conjugate
poles are considered to be dominant and the system’s behavior can be approximated by a second­order system.
As depicted in Figure 1.2, poles p1 and p2 are the complex conjugate dominant poles and are chosen to satisfy the
natural frequency, ωn, and damping ratio, ζ, second­order specifications. Let the conjugate poles be

p1 = −σ + jωd (1.14)

and
p2 = −σ − jωd (1.15)

where σ = ζωn and ωd = ωn

√
1− ζ2 is the damped natural frequency. The remaining closed­loop poles, p3 and p4,

are placed along the real­axis to the left of the dominant poles, as shown in Figure 1.2.

Figure 1.2: Desired closed­loop pole locations
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2 In-Lab Exercises
2.1 Pole Placement Control Design
The time­domain specifications when the pendulum is balanced and tracking a rotary arm setpoint are:

PO ≤ 6.81%
ts ≤ 1.54 s (2.1)

Thus, as the rotary arm goes back and forth to track the reference (while balancing the pendulum) it should have a
percent overshoot and settling time matching these requirements.

1. The open­loop poles of the inverted pendulum are located at {0,−22.03, 13.58,−4.672}. Note that the system
is unstable. Find the characteristic equation of A.

2. Find the companion matrices (Ã, B̃).

3. The percent overshoot and settling time specifications given in Equation 2.1 translates into the following natural
frequency and damping ratio requirements:

ζ = 0.65

ωn =4 rad/s (2.2)

Based on these specifications, find the location of the two dominant poles p1 and p2.

4. Find the desired characteristic equation if the other poles are placed at p3 = −40 and p4 = −45.

5. Applying the companion­based control u = −K̃x to (Ã, B̃) results in the closed­loop system (Ã − K̃B̃). Find
the gain K̃ that assigns the poles to their new desired location.

6. Open the MATLABr software.

7. Design a MATLAB script that evaluates the controllability of the Rotary Inverted Pendulum system.
Use the state­space model defined in the rotpen_ABCD_eqns_ip.m and the model parameters in the
qube2_rotpen_param.m scripts supplied. Attach the resulting controllability matrix and explain whether or not
the system is controllable.
Hint: The MATLABr Control System Toolbox includes a command to find the controllability matrix. Look
through the documentation to find the appropriate command.

8. Use the pole­placement design method in MATLABr to find the state­feedback gain, K, required to place the
closed­loop poles to the desired poles. Show the MATLAB commands used and the obtained gain.

Hint: The pole­placement design algorithm has been packaged in the MATLABr Control System Toolbox.
Look through the documentation to find the appropriate command.

2.2 Pole Placement-Based Balance Control

Construct a QUARCr controller similarly to Figure 2.1 that balances the pendulum on the QUBE­Servo 2 rotary
pendulum system using a generated control gain K.
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Figure 2.1: SIMULINKr/QUARCr model implementing the rotary pendulum balance controller

1. If supplied, open the q_qube2_rotpen_pp SIMULINKr model. Otherwise, use the SIMULINKr model you made
in the Rotary Pendulum Modeling laboratory experiment to construct the controller shown in Figure 2.1:

• Using the angles from the Counts to Angles subsystem you designed in the Rotary Pendulum Modeling
laboratory experiment (which converts encoder counts to radians), build state x given in Equation 1.5. In
Figure 2.1, it is bundled in the subsystem called State X. Use high­pass filters 50s/(s + 50) to compute
the velocities θ̇ and α̇.

• Add the necessary Sum and Gain blocks to implement the state­feedback control given in Equation 1.7.
Since the control gain is a vector, make sure the gain block is configured to do matrix type multiplication.

• Add the Signal Generator block in order to generate a varying, desired arm angle. To generate a reference
state, make sure you include a Gain block of

[
1 0 0 0

]
.

2. Load the state­feedback gain K you found in Section 2.1. Make sure it is set as variable K in the MATLABr

workspace. Alternatively, if supplied, run the setup_qube2_pp.m script in MATLAB.

3. Set the Signal Generator block to the following:

• Type = Square
• Amplitude = 1

• Frequency = 0.125 Hz

4. Set the Gain block that is connected to the Signal Generator to 0.

5. Build and run the QUARCr controller.

6. Manually rotate the pendulum in the upright position until the controller engages.

7. Once the pendulum is balanced, set the Gain to 30 to make the arm angle go between ±30◦. The scopes
shown in Figure 2.2 show an example response when using a state­feedback gain of K =

[
−2 35 −1 3

]
.

Attach the response of the rotary arm, pendulum, and controller voltage using the control gain found above in
Section 2.1.
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(a) Rotary Arm (b) Pendulum

(c) Motor Voltage

Figure 2.2: QUBE­Servo 2 example rotary pendulum response using default gain

8. Does the rotary arm and pendulum response match the settling time and percent overshoot specifications
given in Equation 2.1? If not, give one reason why there is a discrepancy.

9. Stop the QUARCr controller.

10. Power off the QUBE­Servo 2 if no more experiments will be conducted.
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