[bookmark: _Toc522262872][image:]

[bookmark: _kj4w0k8lno65]Lab Manual: Control Systems Design and Analysis
Using the Quanser Controls Board for NI ELVIS III

[image:]

[bookmark: _kaorjoxr0qj4]© 2018 Quanser Inc., All Rights Reserved

Printed in Markham, Ontario.

This document and the software described in it are provided subject to a license agreement. Neither the software nor this document may be used or copied except as specified under the terms of that license agreement. Quanser Inc. grants the following rights: a) The right to reproduce the work, to incorporate the work into one or more collections, and to reproduce the work as incorporated in the collections, b) to create and reproduce adaptations provided reasonable steps are taken to clearly identify the changes that were made to the original work, c) to distribute and publically perform the work including as incorporated in collections, and d) to distribute and publicly perform adaptations. The above rights may be exercised in all media and formats whether now known or hereafter devised. These rights are granted subject to and limited by the following restrictions: a) You may not exercise any of the rights granted to You in above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation, and b) You must keep intact all copyright notices for the Work and provide the name Quanser Inc. for attribution. These restrictions may not be waved without express prior written permission of Quanser Inc.

LabVIEW and National Instruments are trademarks of National Instruments.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc.

All other trademarks or product names are the property of their respective owners.

Additional Disclaimers: The reader assumes all risk of use of this resource and of all information, theories, and programs contained or described in it. This resource may contain technical inaccuracies, typographical errors, other errors and omissions, and out-of-date information. Neither the author nor the publisher assumes any responsibility or liability for any errors or omissions of any kind, to update any information, or for any infringement of any patent or other intellectual property right.

Neither the author nor the publisher makes any warranties of any kind, including without limitation any warranty as to the sufficiency of the resource or of any information, theories, or programs contained or described in it, and any warranty that use of any information, theories, or programs contained or described in the resource will not infringe any patent or other intellectual property right. THIS RESOURCE IS PROVIDED “AS IS.” ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY AND ALL IMPLIEDWARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, ARE DISCLAIMED.

No right or license is granted by publisher or author under any patent or other intellectual property right, expressly, or by implication or estoppel.

IN NO EVENT SHALL THE PUBLISHER OR THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, COVER, ECONOMIC, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS RESOURCE OR ANY INFORMATION, THEORIES, OR PROGRAMS CONTAINED OR DESCRIBED IN IT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND EVEN IF CAUSED OR CONTRIBUTED TO BY THE NEGLIGENCE OF THE PUBLISHER, THE AUTHOR, OR OTHERS. Applicable law may not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Table of Contents

Introduction	8
Learning Objectives	8
Prerequisites	8
Completed Courses	8
Hardware, Software, and Tool Knowledge	9
Organization of the Lab Manual	9
Lab 1: DC Motor Modeling	9
Lab 2: Speed Control	9
Lab 3: Position Control	9
Lab 4: Stability	9
Lab 5: Inverted Pendulum Control	10
Lab 6: Digital Control	10
Lab Tools and Technology	11
Platform: NI ELVIS III	11
Hardware: Quanser Controls Board	12
Software: QUARC™ on NI ELVIS III for the Quanser Controls Board	13
Lab 1: DC Motor Modeling	14
Learning Objectives	15
Required Tools and Technology	16
Expected Deliverables	17
Section 1: First Principles Modeling	18
1.1 Theory and Background	18
1.2 Implement	21
1.3 Analyze	23
Section 2: Experimental Modeling	24
2.1 Theory and Background	24
2.2 Implement	26
2.3 Analyze	28
Section 3: Frequency Response Modeling	29
3.1 Theory and Background	29
3.2 Implement	32
3.3 Analyze	38
Lab 2: DC Motor Speed Control	39
Learning Objectives	40
Required Tools and Technology	41
Expected Deliverables	42
Section 1: Qualitative PI Control Design	43
1.1 Theory and Background	43
1.2 Implement	44
1.3 Analyze	45
Section 2: Quantitative PI Control Design	46
2.1 Theory and Background	46
2.2 Implement	49
2.3 Analyze	50
Section 3: Lead Compensator Design	52
3.1 Theory and Background	52
3.2 Implement	57
3.3 Analyze	60
Lab 3: DC Motor Position Control	62
Learning Objectives	63
Required Tools and Technology	64
Expected Deliverables	65
Section 1: Quantitative PD Control Design	66
1.1 Theory and Background	66
1.2 Implement	68
1.3 Analyze	69
Section 2: Steady-State Error	71
2.1 Theory and Background	71
2.2 Implement	74
2.3 Analyze	76
Section 3: Lead Compensator Design using Root Locus	77
3.1 Theory and Background	77
3.2 Implement	80
3.3 Analyze	85
Lab 4: Inverted Pendulum Control	86
Learning Objectives	87
Required Tools and Technology	88
Expected Deliverables	89
Section 1: Pendulum Moment of Inertia	90
1.1 Theory and Background	90
1.2 Implement	91
1.3 Analyze	93
Section 2: State-Space Modeling of the Pendulum Module	94
2.1 Theory and Background	94
2.2 Implement	98
2.3 Analyze	99
Section 3: Inverted Pendulum Control	100
3.1 Theory and Background	100
3.2 Implement	107
3.3 Analyze	110
Section 4: Optimal Control of an Inverted Pendulum	112
4.1 Theory and Background	112
4.2 Implement	113
4.3 Analyze	117
Section 5: Swing-Up Hybrid Control	118
5.1 Theory and Background	118
5.2 Implement	121
5.3 Analyze	122
Lab 5: Stability Analysis	124
Learning Objectives	125
Required Tools and Technology	126
Expected Deliverables	127
Section 1: BIBO Stability Analysis	128
1.1 Theory and Background	128
1.2 Implement	129
1.3 Analyze	130
Section 2: Nyquist Stability Analysis	131
2.1 Theory and Background	131
2.2 Implement	134
2.3 Analyze	138
Section 3: Routh-Hurwitz Stability Analysis	139
3.1 Theory and Background	139
3.2 Implement	144
3.3 Analyze	145
Lab 6: Digital Control	146
Learning Objectives	147
Required Tools and Technology	148
Expected Deliverables	149
Section 1: Introduction to Digital Control	150
1.1 Theory and Background	150
1.2 Implement	152
1.3 Analyze	155
Section 2: Discrete Stability	156
2.1 Theory and Background	156
2.2 Implement	159
2.3 Analyze	161
Section 3: Discrete Lead Compensator Design	163
3.1 Theory and Background	163
3.2 Implement	165
3.3 Analyze	168

[bookmark: _cghw0jn0q5z0][bookmark: _Toc503859248]

[bookmark: _Toc513019146][bookmark: _Toc10546816]Introduction

As automation and connected devices move from industry to commercial products and the home, an understanding of the design and implementation of control systems on hardware is essential. The courseware progression that accompanies the Quanser Controls Board begins with a grounding in the basics of modeling and control. Topics then transition into more complex strategies including optimal control, hybrid control, and digital control. The skills and hands-on experiences gained using the Controls Board are directly applicable to the challenges engineers face creating the complex systems that dominate the world today.

[bookmark: _Toc513019147][bookmark: _Toc10546817]Learning Objectives

After completing the labs and projects in this manual, you should have the ability to complete the following actions.

1. [bookmark: _Toc503859250]Model a first-order system both experimentally and theoretically

2. Create a control system to meet a set of desired specifications

3. Determine the stability of a system

4. Create a controller to control an unstable system

5. Create an optimal controller to govern the behavior of a complex coupled system

6. Control a digital system with a limited sampling rate

[bookmark: _Toc10546818]Prerequisites

This lab manual was designed for students who have completed the following courses and have a working knowledge of the following hardware, software, and tools.

[bookmark: _Toc10546819]Completed Courses

1. Differential Equations or equivalent
2. Linear Algebra or equivalent
3. Dynamic Systems or equivalent

[bookmark: _Toc10546820]Hardware, Software, and Tool Knowledge

1. Basic experience using the LabVIEW graphical programming language. Learn what you need to know here.

[bookmark: _Toc513019151][bookmark: _Toc10546821]Organization of the Lab Manual

The lab manual for the Quanser Controls Board is divided into a collection of laboratory sessions that focus on the fundamental aspects of modern control design. Each session consists of a background section that can be used to orient and refresh student knowledge on the topic, as well as to serve as a reference for the concepts addressed. The second section presents a procedure to implement and validate the concepts on hardware, to relate the theoretical foundation to an applied context. The final section focuses on assessment and specific observations to ensure that the learning objectives of the exercise are achieved.

[bookmark: _Toc513019152][bookmark: _Toc10546822]Lab 1: DC Motor Modeling
This section covers modeling of a DC motor including first principles theoretical modeling, experimental modeling, and modeling of frequency domain characteristics.

[bookmark: _Toc513019153][bookmark: _Toc10546823]Lab 2: Speed Control
This section covers speed control of a DC motor. The sequence begins with basic proportional control, and then moves on to qualitative PI control, and quantitative control design to specifications. The session concludes with a presentation of Lead control design.

[bookmark: _Toc513019154][bookmark: _Toc10546824]Lab 3: Position Control
This section covers the design and implementation of a DC motor position controller. The sequence concludes with an investigation of steady state error characteristics.

[bookmark: _Toc513019155][bookmark: _Toc10546825]Lab 4: Stability
This section covers the basics of stability analysis including BIBO stability, Nyquist stability analysis, and the Routh Hurwitz coefficient test.

[bookmark: _Toc513019156][bookmark: _Toc10546826]Lab 5: Inverted Pendulum Control
This section covers the control of an inverted Furuta pendulum. The progression begins with basic experimental modeling, before moving into PID control, optimal control, and hybrid control.

[bookmark: _Toc513019157][bookmark: _Toc10546827]Lab 6: Digital Control
This section covers the basics of digital control of a DC motor. The sequence begins with an introduction to digital control concepts and quantization, before moving into matched pole-zero discretization, and then finally digital control design.

[bookmark: _Toc10546828]Lab Tools and Technology

[bookmark: _Toc10546829]Platform: NI ELVIS III

[image:]

The NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) is an engineering laboratory solution for project-based learning that combines instrumentation and embedded design with a web-driven experience to create an active learning environment in the lab and studio and flipped classrooms, delivering a greater understanding of engineering fundamentals and system design. NI ELVIS addresses engineering curriculum by integrating project-based learning, teamwork, and design with course-specific application boards and labs developed by experts from education and industry. NI ELVIS, as a programmable platform, gives educators the ability to scale to future multidisciplinary applications driving student employability.
[image:]
Learn more at http://www.ni.com/en-us/support/model.ni-elvis-iii.html

[bookmark: _Toc503859258]

[bookmark: _Toc513019160][bookmark: _Toc10546830]Hardware: Quanser Controls Board

[image:]

Designed exclusively for NI ELVIS platform, the application board is designed to accurately match dynamic models based on both physical principles and experimental tests. The servo has a highly linear motor response allowing for accurate modeling and control design. With integrated encoder feedback for both the motor and the optional pendulum accessory the servo can be easily configured for control tasks ranging from motor speed and position control to inverted pendulum swing-up and balance control.
[image:]
Learn more at http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

[bookmark: _Toc10546831]Software: QUARC™ on NI ELVIS III for the Quanser Controls Board

[image:]

QUARC™ on NI ELVIS III for the Quanser Controls Board software adds powerful tools and capabilities to Simulink® that make the development and deployment of sophisticated real-time control applications easier. QUARC™ generates real-time code directly from Simulink-designed controllers and runs it in real-time on the NI ELVIS III target – all without digital signal processing or without writing a single line of code.
[image:]
Learn more at https://www.quanser.com/download-quarc-ni-elvis3-controls-board/

[bookmark: _Toc10546832]Lab 1: DC Motor Modeling

[image:]
[bookmark: _Toc510014202]Figure 0-1: One of the many applications of DC motor modeling and control

The design and implementation of a control system almost always begins with the creation of a model of the plant that is to be controlled. This is because in industry it is rare to be able to test, tune, and characterize the performance of a controller on a plant without risk of damage or injury. This is also because, as illustrated in the example in Figure 0-1, a controller often needs to be designed and tuned enough for basic operation before final tuning and validation are even possible. That being said, the creation of a theoretical model of a complex system can be prohibitively difficult, resulting in the creation of various approaches to experimental modeling to characterize complex systems. The ultimate goal of modeling for control design is to be able to create a simulation of a plant and various controllers in order to gain confidence that an approach will work before implementation on hardware.

[bookmark: _Toc510092712][bookmark: _Toc522262873][bookmark: _Toc10546833]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Create an electromechanical model of a DC motor using first principles.
2. Inspect the step response of a DC motor to characterize a transfer function.
3. Use Bode plotting to experimentally determine the model of a DC motor.

[bookmark: _Toc522262875][bookmark: _Toc10546834]Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc510092714][bookmark: _Toc522262874][bookmark: _Toc10546835]Expected Deliverables

In this lab, you will collect the following deliverables:

· Simulink® first principles model of the DC motor
· Calculated equivalent moment of inertia acting on the motor shaft
· Response of the first principles model and hardware
· Transfer function representing the first order model
· Experimental step-response of the DC motor
· Transfer function of the experimental model of the DC motor

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.

[bookmark: _Toc510014181][bookmark: _Toc522262876][bookmark: _Toc10546836]Section 1: First Principles Modeling

[bookmark: _Toc503859273][bookmark: _Toc510014182][bookmark: _Toc522262877][bookmark: _Toc10546837]1.1 Theory and Background

A servomotor is typically characterized by a brushed DC motor, and a sensor for measuring angular rotation. The Quanser Controls Board consists of a brushed DC motor, and high-resolution optical encoder. The model of the servomotor consists of an electrical model, and mechanical model of the dynamics of the motor mechanism. The motor armature circuit schematic is shown in Figure 1-1, and the electrical and mechanical parameters are given in Table 1-1. The DC motor shaft is connected to a load hub, which is a metal disk used to mount the inertia disk or rotary pendulum, and has a moment of inertia of Jh. For this modeling exercise, a disk load is attached to the load hub with a moment of inertia of Jd.

[image:]
[bookmark: _Toc510014199]Figure 1-1: Quanser Controls Board DC motor and load

The back-EMF (electromotive force) voltage eb depends on the speed of the motor shaft, ωm, and the back-EMF constant of the motor, km. It opposes the current flow. The back-EMF voltage characteristics are:

Equation 1-1

[bookmark: _Toc504395607]Table 1-1: Quanser Controls Board system parameters
	Symbol
	Description
	Value

	DC Motor

	Rm
	Terminal resistance
	8.4 Ω

	Kt
	Torque constant
	0.042 N·m/A

	Km
	Motor back-emf constant
	0.042 V/(rad/s)

	Jm
	Rotor inertia
	4.0 x 10-6 kg·m2

	Lm
	Rotor inductance
	1.16 mH

	Load Hub

	mh
	Load hub mass
	0.0106 kg

	rh
	Load hub radius
	0.0111 m

	Disk Load

	md
	Load disk mass
	0.053 kg

	rd
	Load disk radius
	0.0248 m

Using Kirchoff’s Voltage Law, you can write the following equation:

Equation 1-2
.

Since the motor inductance, Lm, is much less than its resistance, it can be ignored. Then, the equation becomes

Equation 1-3
.

Solving for im(t), the motor current can be found as

Equation 1-4

The motor shaft equation is expressed as

Equation 1-5

where Jeq is the total moment of inertia acting on the motor shaft and τm is the applied torque from the DC motor. Based on the current applied, the torque is

Equation 1-6

The moment of inertia of a disk about its pivot, with mass m and radius r is

Equation 1-7

[bookmark: _Toc503859288][bookmark: _Toc510014183][bookmark: _Toc522262878][bookmark: _Toc10546838]1.2 Implement

1. Open the Simulink® model Lab1_1_DCMotor_Modeling.slx
[image:]
[bookmark: _Toc510014200]Figure 1-2: Simulink® block diagram representing the DC motor model
2. The motor shaft of the Quanser Controls Board is attached to a load hub and a disk load. Based on the parameters given in Table 1-1, calculate the equivalent moment of inertia that is acting on the motor shaft.
[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\Simulink Modeling Lab_Incomplete_Model.JPG]
Figure 1-3: Incomplete block diagram representing the DC motor mode
3. Open the subsystem named Model. Using the equations in Section 1.1, assemble a simple block diagram to model the system. You will need a few Gain blocks, a Subtract node, and an Integrator node (to go from acceleration to speed). Part of the solution is shown in Figure 1-3. Save a screen capture of your model.
4. Open the MATLAB® script system_parameters.m. Using Table 1-1 and the equations given in the Theory and Background section, make the necessary changes to the script such that all of the required variables and system parameters used in your model you defined in the MATLAB® Workspace. Run the script.
5. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
6. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
7. The model applies a step input to the motor and stops after 5 seconds. The applied step input as well as the simulated and actual responses of the system will be similar to the scopes shown in Figure1-4

[image:]
[image:]
[bookmark: _Toc510014201]Figure 1-4: Measured and simulated response of the Quanser Controls Board DC motor

8. Save a screen capture of your results.
9. Formulate the differential equation for ωm using Equation 1-4 through Equation 1-6. Compare your result with the transfer function obtained from the experimental modeling laboratory (Equation 1-6). Hint: Obtain the Voltage Vm (s) to Speed Ωm (s) transfer function by applying a Laplace Transform to the derived differential equation.
[bookmark: _Toc503859289][bookmark: _Toc510014184][bookmark: _Toc522262879][bookmark: _Toc10546839]1.3 Analyze

1-1 What is the equivalent moment of inertia acting on the motor shaft that you calculated in Step 2?

1-2 Attach the screen capture you saved in Step 3.

1-3 Does your model represent the Quanser Controls Board DC motor when validated in Step 7? Attach the screen capture you saved in Step 8.

1-4 What is the differential equation for ωm, formulated in Step 9?

[bookmark: _Toc522262880][bookmark: _Toc10546840]Section 2: Experimental Modeling

[bookmark: _Toc522262881][bookmark: _Toc10546841]2.1 Theory and Background

The bump test is a simple experimental test that is used to create a model based on the step response of a stable system. A step input is given to the system and its response is recorded. As an example, consider a system given by the following transfer function:

Equation 2-1

The step response shown in Figure 2-1 is generated using this transfer function with K = 5 rad/(V s) and τ = 0.05 s.

[image:]
Figure 2-1: Input and output signal used in the bump test method

The step input begins at time t0. The input signal has a minimum value of umin and a maximum value of umax. The resulting output signal is initially at y0. Once the step is applied, the output tries to follow it and eventually settles at its steady-state value yss. From the output and input signals, the steady-state gain is

Equation 2-2

where ∆y = yss − y0 and ∆u = umax − umin. The time constant of a system τ is defined as the time it takes the system to respond to the application of a step input to reach 1 − 1/e ≈ 63.2% of its steady-state value. For example, for the response in Figure 2-1

where

Equation 2-3

Then, you can read the time t1 that corresponds to y(t1) from the response data in Figure 2-1. From this, the model time constant can be found as

Equation 2-4

When applied to the Quanser Controls Board DC motor, the s-domain representation of a step input voltage with a time delay t0 is given by

Equation 2-5

where Av is the amplitude of the step and t0 is the step time (i.e. the delay). The voltage-to-speed transfer function is

Equation 2-6

where K is the model steady-state gain, τ is the model time constant, Ωm (s) = [ωm (t)] is the load gear angular velocity, and Vm (s) = [vm (t)] is the applied motor voltage.

If we substitute input Equation 2-5 into the system transfer function Equation 2-6, we get

Equation 2-7

We can then find the Quanser Controls Board DC motor speed step response in the time domain ωm (t) by taking inverse Laplace of this equation

Equation 2-8

with the initial conditions ωm (0) = ωm (t0).

[bookmark: _Toc522262882][bookmark: _Toc10546842]2.2 Implement

1. Open the Simulink® model Lab1_2_DCMotor_Experimental_Modeling.slx.

[image:]
Figure 2-2: Application for experimental modeling of the Quanser Controls Board DC Motor
2. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
3. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
4. The Simulink® model will apply a 2 V step to the servo. The response should be similar to that shown in Figure 2-3.

	[image:]

	[image:]

Figure 2-3: Quanser Controls Board DC Motor bump test response
5. Once the model stops, open the Speed (rad/s) scope. You can save the scope for motor voltage and speed by going to each scope and under File | Print to Figure then select File | Save. Save the measured load disk speed and motor voltage as a bitmap image file and attach that to your report.
6. Find the steady-state gain using the measured step response. Hint: you can use the Cursor Measurements button found on the toolbar to read the steady state value for motor speed (see Figure 2-4).

[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\cursor measurements.JPG]
Figure 2-4: Plot Cursor Measurements tool
7. Find the time constant from the obtained response.
8. Record your derived model parameters K and τ.
9. Modify the Simulink® model by adding a Transfer Function block using the derived model parameters to plot the simulated and measured responses simultaneously. Build and start the model. Save a figure displaying both the measured and simulated response in one plot and another showing the input voltage.
[bookmark: _Toc504415530][bookmark: _Toc522262883][bookmark: _Toc10546843]2.3 Analyze

1
2
2-1 Attach the plot that you saved in Step 4.

2-2 What is the steady-state gain that you found in Step 6?

2-3 What is the time constant that you found in Step 7?

2-4 Attach the figure that you saved in Step 9 showing the commanded voltage, and both the measured and simulated responses.

2-5 Based on the observed response in Step 9, did you derive the model parameters K and τ correctly?

[bookmark: _Toc522262884][bookmark: _Toc10546844]Section 3: Frequency Response Modeling

[bookmark: _Toc522262885][bookmark: _Toc10546845]3.1 Theory and Background

The response of a typical first-order time-invariant system to a sinusoidal input is shown in Figure 3-1. As seen from the figure, the input signal (u) is a sine wave with a fixed amplitude and frequency. The resulting output (y) is also a sinusoid with the same frequency but with a different amplitude. By varying the frequency of the input sine wave and observing the resulting outputs, a Bode plot of the system can be obtained as shown in Figure 3-2.
[image: Cover and Concept Review - Google Docs]
Figure 3-1: Typical frequency response
The Bode plot can then be used to find the steady-state gain, i.e. the DC gain, and the time constant of the system. The cutoff frequency, c, shown in Figure 3-2, is defined as the frequency where the gain is 3 dB less than the maximum gain (i.e. the DC gain). When working in the linear non-decibel range, the 3 dB frequency is defined as the frequency where the gain is of the maximum gain. The cutoff frequency is also known as the bandwidth of the system which represents how fast the system responds to a given input.
[image:]
Figure 3-2: Magnitude Bode plot

The magnitude of the frequency response of the Controls Board’s transfer function is defined as:

Equation 3-1

where  is the frequency of the motor to input voltage signal Vm. We know that the transfer function of the system has the generic first-order system form given in Equation 3-2:

Equation 3-2

By substituting in this equation, we can find the frequency response of the system as:

Equation 3-3

The magnitude or absolute value of a complex number is defined as . Therefore, the system’s magnitude with respect to input frequency equals:

Equation 3-4

We will refer to the frequency response model parameters and in order to differentiate them from the nominal model parameters often symbolized as K and . The steady-state gain or the DC gain (i.e. gain at zero frequency) of the model is:

Equation 3-5

By definition, the DC gain drops 3 dB (or) at the cutoff frequency. Therefore,

Equation 3-6

Applying this to Equation 3-4 results in:

Equation 3-7

We can then solve for time constant as:

Equation 3-8

[bookmark: _Toc522262886][bookmark: _Toc10546846]3.2 Implement

1. Open the Simulink® model Lab1_3_DCMotor_Frequency_Response_Modeling.slx, which is shown in Figure 3-3.
[image:]
Figure 3-3: Simulink® model that applies a sinusoidal voltage and measures the corresponding servo speed
2. The Simulink® model applies a sinusoidal input to the DC motor and measures the load disc velocity.
3. Initially, you need to find the peak (steady-state) velocity of the load disc when a constant input voltage is applied to the DC motor (f = 0 Hz). To create a 2 V constant input voltage, set the following parameters from in the model:
a. Amplitude: 2 V
b. Frequency: 0.5 Hz
c. Offset: 2 V
d. Gain: 0
Note: the smooth signal generator does not accept a 0 Hz frequency. Therefore, in order to generate a zero output signal the gain has to be set to 0.
4. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
5. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
6. The load disc should begin rotating in one direction. Your results should be similar to Figure 3-4, which shows the input motor voltage as well as the actual response of the plant. Take a screenshot of your results. Alternatively, in each scope click File | Print to Figure then select File | Save and save the displayed data to a bitmap image file.
7. Once the model has stopped, open the Speed (rad/s) scope. Measure the peak velocity of the load disc and enter the measurement in Table 3-1 under the f = 0 Hz row. Hint: use the Cursor Measurements button found on the toolbar to read the steady state value for motor speed (see Figure 2-4).
8. Proceed to measure the peak velocities of the DC motor for different input frequencies, starting from 0.5 Hz up to 3 Hz in 0.5 Hz increments. Return the signal gain from 0 to 1. Start by setting the following parameters in the front panel:
a. Amplitude: 2.0 V
b. Frequency: 0.5 Hz
c. Offset: 0 V
9. Re-build and start the Simulink® model. Typical response is shown in Figure 3-5. Take a screenshot of your results and record the peak velocity in Table 3-1.

	[image:]

	[image:]

Figure 3-4: DC motor response to a constant input voltage

	[image:]

	[image:]

Figure 3-5: DC motor response to a 0.5 Hz sinusoidal input

10. While keeping the amplitude at 2 V and offset at 0 V, increase the input frequency in increments of 0.5 Hz and run your VI. Record the resulting peak velocities in Table 3-1.

Table 3-1: Collected frequency response data
	f (Hz)
	Amplitude (V)
	Peak Velocity (rad/s)

	0
	2
	

	0.5
	2
	

	1.0
	2
	

	1.5
	2
	

	2.0
	2
	

	2.5
	2
	

	3.0
	2
	

11. Open the MATLAB® script Bode_Plot.m. You will use this script and the data collected in Table 3-1, to generate a Bode magnitude plot similar to the one shown in Figure 3-6. In this example, the Y-axis represents magnitude in decibels and the X-axis represents frequency in hertz using a logarithmic scale.
[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\labx.1\Bode_Plot.JPG]
Figure 3-6: Sample Bode plot
12. In the script, complete the System_Response matrix by entering the values of frequency, amplitude, and peak velocity recorded in Table 3-1.
13. Run the script.
14. The script will automatically calculate gains in rad/s/V and in dB. Take a screenshot of your Bode plot.
15. Referring to the Theory and Background section and using the Bode plot, determine the cutoff frequency (c), time constant (e,f) and DC gain (Ke,f). Record your findings in Table 3-2.

Hint: Note that magnitude in the Bode plot is given in dB. To convert gain from rad/s/V to dB use the following expression
Table 3-2: Derived model parameters
	Ke,f (rad/s/V)
	c (rad/s)
	e,f (s)

	
	
	

16. To validate the derived model parameters, add a Transfer Function block to your model using the derived values of Ke,f and e,f. Re-build and start your Simulink® model. Observe the measured and modeled responses. How well do they match? Take a screenshot of your results. Sample results comparing the measured and modeled responses are shown in Figure 3-7 using the following input parameters.
[image:]
Figure 3-7: Sample modeled and measured responses of the DC motor
(Amplitude: 2.0 V, Frequency: 2.5 Hz, Offset: 0 V)
[bookmark: _Toc522262887][bookmark: _Toc10546847]3.3 Analyze

3-1 Attach the screen capture you saved in Step 6 that shows the response of the system to a constant input.

3-2 Attach the screen capture you saved in Step 9 that shows the response of the system to a sinusoidal input.

3-3 Present the frequency response data you recorded in Table 3-1.

3-4 Attach a screen capture of the Bode plot that you obtained in Step 11.

3-5 What is the cutoff frequency (c), time constant (e,f) and DC gain (Ke,f) that you obtained in Step 14? Show sample calculations.

3-6 What is the transfer model that you obtained?

[bookmark: _Toc522262888]3-7 How well did your modeled and actual responses compare? Attach a screen capture of your results.

[bookmark: _Toc10546848]Lab 2: DC Motor Speed Control

[image:]
Figure 0-1: Vehicle cruise control is only one of the many applications of DC motor speed control

One of the most common tasks that automation, robotics, and industrial engineers are called upon to perform when creating industrial systems is to control the speed of a DC motor. From automation in manufacturing, to automotive systems, autonomous systems and even aerospace, DC motors are used to actuate critical systems, and their speed needs to be controlled to perform within specific design criteria. As an introduction to control systems, the control of a DC motor serves as an excellent starting point because DC motors are relatively easy to model and control. The DC motor system on the Quanser Controls Board was designed to make that experience even easier by: A) tuning the dynamics of the motor to match a theoretical linear model accurately, and B) creating an interface to the hardware that makes sending commands to the amplifier system and reading the sensors quick and easy. Despite the ease of use, the skills gained in these exercises are directly applicable to a multitude of exciting emerging application areas in engineering.

[bookmark: _Toc522262889][bookmark: _Toc10546849]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Tune PI control parameters for speed control of a DC motor.

1. Design PI control parameters to meet speed control specifications.

1. Use lead compensator design to control the speed of a DC motor.

[bookmark: _Toc10546850]Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB®
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc522262890][bookmark: _Toc10546851]Expected Deliverables

In this lab, you will collect the following deliverables:

· Evidence of the behavior of the DC motor with various control gains
· Step responses of the system to various sets of control gains
· Peak time and percent overshoot specifications
· Calculated control gains to meet the specifications
· Measured speed response to the designed control gains
· Measured peak time and percent overshoot
· Evidence of the effect of the design parameters on the control response

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.

[bookmark: _Toc510092715][bookmark: _Toc522262892][bookmark: _Toc10546852]Section 1: Qualitative PI Control Design

[bookmark: _Toc510092716][bookmark: _Toc522262893][bookmark: _Toc10546853]1.1 Theory and Background

The speed of the Quanser Controls Board DC motor is controlled using a proportional-integral (PI) control system. PI control combines a measure of the current instantaneous error of the system with the accumulated error over time. The block diagram of the closed-loop system is shown in Figure 1-1:

[image:]
[bookmark: _Toc510014203]Figure 1-1: Closed loop PI control system block diagram

The transfer function representing the DC motor speed-voltage relation with steady-state gain K and time constant τ is:

Equation 1-1

and will be used to design the PI controller. The input-output relation in the time-domain for a PI controller with set-point weighting is:

Equation 1-2

where kp is the proportional gain, ki is the integral gain, and bsp is the set-point weight. The closed loop transfer function from the speed reference ωd to the angular motor speed output ωm is:

Equation 1-3

[bookmark: _Toc510092717][bookmark: _Toc522262894][bookmark: _Toc10546854]1.2 Implement

1. Open the model Lab2_1_Qualitative_PI_Control.slx.
1. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
[image:] [image:]
Figure 1-2: Default response of controls application
1. In the Signal Generator section of the front panel set:
· Amplitude (rad/s) to 10
· Frequency (Hz) to 0.2
· Offset (rad/s) to 80
1. In the Control Parameters section set:
· kp (V s/rad) to 0.050
· ki (V/rad) to 1.00
· bsp to 0.00
1. Examine the behavior of the measured speed with respect to the reference speed in the Speed (rad/s) scope. Your results should look similar to Figure 1-2.
1. Increment and decrement kp in steps of 0.005 V.s/rad.
1. Observe the changes in the measured signal with respect to the reference signal in response to the updated proportional gains.
1. Stop the model and set kp to 0 V s/rad and ki to 0 V/rad. Re-run the model. The motor should stop spinning.
1. Increment the integral gain ki in steps of 0.10 V/rad, between 0.1 V/rad and 2.00 V/rad.
1. Examine the response of the measured speed in the Speed (rad/s) scope.
1. Click on the Stop button to stop the model.

[bookmark: _Toc510092718][bookmark: _Toc522262895][bookmark: _Toc10546855]1.3 Analyze

1-1 Explain the behavior of the measured speed with respect to the reference speed in Step 5.

1-2 Explain the observed performance differences in Step 7.

1-3 Describe and explain the response of the measured speed in Step 10 when ki is set low compared to when ki is high.

[bookmark: _Toc522262896][bookmark: _Toc10546856]Section 2: Quantitative PI Control Design

[bookmark: _Toc522262897][bookmark: _Toc10546857]2.1 Theory and Background

The standard second-order transfer function has the form

Equation 2-1

where ωn is the natural frequency and ζ is the damping ratio. This leads to the standard desired closed-loop characteristic polynomial of

Equation 2-2

where ω0 is the undamped closed loop frequency and ζ is the damping ratio. The denominator of the transfer function shown in Equation 1-3 in Section 2.1 is the characteristic equation of the Quanser Controls Board DC motor system, and matches the desired characteristic equation in Equation 2-2 with the following gains:

Equation 2-3

and

Equation 2-4

Large values of ω0 give large values of controller gain. The damping ratio, ζ, and the set-point weight parameter, bsp, can be used to adjust the speed and overshoot of the response to reference values.
There is no tachometer sensor present on the Quanser Controls Board to measure the speed. Instead, the derivative of the encoder signal is calculated using a first-order differentiating filter.

[bookmark: _Toc509993529]Second-order Step Response

The properties of the response of a second-order system as defined by Equation 2-1 depend on the values of the parameters ωn and ζ.

Consider a second-order system as shown in Equation 2-1 subjected to a step input given by

Equation 2-5

with a step amplitude of R0 = 1.5. The system response to this input is shown in Figure 2-1, where the red trace is the output response y(t) and the blue trace is the step input r(t).
[image:]
Figure 2-1: Typical step response of second-order system
[bookmark: _Toc509993530]Peak Time and Overshoot

The maximum value of the response is denoted by the variable ymax and it occurs at a time tmax. For a response similar to Figure 2-1, the percent overshoot is found using

Equation 2-6

In a second-order system, the amount of overshoot depends solely on the damping ratio parameter and it can be calculated using the equation

Equation 2-7

From the initial step time t0 the time it takes for the response to reach its maximum value is

Equation 2-8

This is called the peak time of the system. It depends on both the damping ratio and natural frequency of the system. It can be derived analytically as

Equation 2-9

Generally speaking, the damping ratio affects the shape of the response while the natural frequency affects the speed of the response.

[bookmark: _Toc509993531][bookmark: _Toc522262898][bookmark: _Toc10546858]2.2 Implement

[bookmark: _Toc509993532]Quantitative PI Control Design

1. Calculate the expected peak time, tp, and percent overshoot, PO, given the following design specifications:
· ζ = 0.75,
· ω0 = 16 rad/s.
1. Calculate the proportional and integral control gains kp and ki, respectively, according to the design specifications for the model parameters:
· K = 22.6 rad/(V s)
· τ = 0.12 s.
If desired, you can conduct an experiment to find more precise model parameters as outlined in the Experimental Modeling laboratory.
1. Open the Simulink® model Lab2_2_Quantitative_PI_Control.slx.
1. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. The DC motor should begin rotating and the scopes should look similar to Figure 2-2.

[image:] [image:]
Figure 2-2: Typical response of the DC motor

1. In the Signal Generator section set:
· Amplitude (rad/s) to 10
· Frequency (Hz) to 0.2
· Offset (V) to 80
1. In the PI Controller section, enter the control gains that you found in Step 2, and ensure that the bsp is set to zero.
1. When you have collected the rising and falling transient response, stop the model by clicking on the Stop button.
1. Capture the measured speed response. Make sure you include both the Speed (rad/s) and the control signal Vm (V) scopes.
1. Measure the peak time and percentage overshoot of the observed response. If the specifications have not been satisfied, adjust the proportional gain kp and integral gain ki to meet the specifications and capture your system response plots. Re-start the model.
1. Click on the Stop button to stop the model.
[bookmark: _Toc509993533]Set-point Weight Analysis

1. Run Lab2_2_Quantitative_PI_Control.slx as outlined in the previous section.
1. In the Signal Generator section of the front panel set:
· Amplitude (rad/s) to 10
· Frequency (Hz) to 0.2
· Offset (V) to 80
1. In the PI Controller section set:
· kp (V s/rad) to 0.10
· ki (V/rad) to 1.50
· bsp to 0.00
1. Increment the set-point weight parameter, bsp, in steps of 0.05 between 0 and 1.
1. Examine the effect that raising bsp has on the shape of the measured speed signal in the Speed (rad/s) scope.
1. Click on the Stop button to stop the model.
[bookmark: _Toc509993534][bookmark: _Toc522262899][bookmark: _Toc10546859]2.3 Analyze

2-1 What is the expected peak time and overshoot that you calculated in Step 1?

2-2 What are the proportional and integral control gains that you calculated in Step 2?

2-3 Attach the measured speed response that you captured in Step 8.

2-4 What peak time and percentage overshoot did you measure in Step 9?

2-5 Were the specifications satisfied? If not, what gains did you use in Step 9 to achieve the desired specifications?

2-6 What effect does increasing the specification ζ have on the measured speed response? How about on the control gains? Hint: Start by examining Equation 2-7.

2-7 What effect does increasing the specification ω0 have on the measured speed response and the generated control gains? Hint: Start by examining Equation 2-9.

2-8 Explain what the set-point weight parameter is doing in Step 15.

[bookmark: _Toc522262900][bookmark: _Toc10546860]Section 3: Lead Compensator Design

[bookmark: _Toc522262901][bookmark: _Toc10546861]3.1 Theory and Background

The generic transfer function of a simple lead or lag compensator can be expressed as:

Equation 3-1

which is a low-pass or phase lag controller for  > 1 (or p > z), and a high-pass or phase lead controller for  < 1 (or p < z).

The proportional gain of the lead compensator is used to attain a certain crossover frequency. In general, increasing the gain, and respectively the crossover frequency, essentially increases the bandwidth of the system, thus decreasing the system's peak time (speeding up the response). A gain of Kc > 1 decreases the system's phase margin and, if Kc is chosen too large, will lead to large overshoots in the system response. For design purposes, Kc is often chosen such that it increases the bandwidth of the system to about half the desired bandwidth. The lead compensator will add additional gain such that the combination of Kc and lead compensator result in the desired system bandwidth.

Even though lag compensators work well in theory, they often struggle with the saturation limits of actual hardware, and may not be able to achieve a zero steady-state error specification. In this lab, we will design a lead compensator in series with an integrator as in Figure 3-1 to achieve zero steady-state error. The resulting controller has the form:

Equation 3-2

[image:]

Figure 3-1: Closed-loop speed control with lead compensator
Lead Compensator Design Procedure

The two main design parameters for a lead compensator are the desired phase margin and the desired crossover frequency. The phase margin mainly affects the shape of the response, and a higher phase margin implies a more stable response with less overshoot. As a rule of thumb, the overshoot percentage (PO) will not go beyond 5% for a phase margin of at least 75 deg.

The crossover frequency is defined as the frequency where the gain of the system is 1 (or 0 dB in a Bode plot). This parameter mainly affects the speed of the response and a larger m implies a decrease in the peak time. As a rule of thumb, the peak time tp will not be more than 0.05 s with a crossover frequency of at least 75 rad.

The design process for a lead compensator can be summarized as follows:

1. Generate the Bode plot of the open-loop uncompensated system.
1. The lead compensator itself will add some gain to the closed-loop system response. To make sure that the bandwidth requirement of the design can be met, a proportional gain Kc needs to be added such that the open-loop crossover frequency is about a factor of two below the desired system bandwidth.
1. Determine the necessary additional phase margin m for the plant with open-loop gain Kc. To do so, compute:

Equation 3-3

i.e. add 5 degrees to the desired phase margin and subtract the open-loop measured phase margin.
1. Compute . To attain the maximum phase m at the frequency m as shown in Figure 3-2, the compensator is required to add 20 log10 () of gain. Here, m is the geometric mean of the two corner frequencies from the zero and pole of the lead compensator, respectively, i.e:

Equation 3-4

Solving for m reveals:

Equation 3-5

The proportional gain of the lead compensator is used to attain a certain crossover frequency. In general, increasing the gain, and respectively the crossover frequency, essentially increases the bandwidth of the system, thus decreasing the system's peak time (speeding up the response). A gain of Kc > 1 decreases the system's phase margin and, if Kc is chosen too large, will lead to large overshoots in the system response. The lead compensator is used to dampen the overshoot and increase the overall stability of the system by increasing the phase margin. The frequency response of the lead compensator in (Equation 1-1) is given by substituting s = jω as:

Equation 3-6

with the corresponding magnitude and phase:

Equation 3-7

Using the trigonometric identity:

On Equation 3-7 yields:

Equation 3-8

Noting:

and using Equation 2.3-5, one can find:

Equation 3-9

Thus, if m is known,  can be determined by solving:

Equation 3-10

1. Determine the value of T using Equation 3-5. To do so, place the corner frequencies of the lead compensator such that m is located at m, i.e. the new gain crossover frequency (the geometric mean of 1/T and 1/T) where the compensator has a gain of 10 dB. By design, m is the frequency at which the system with compensator has 0 dB gain. Therefore, m has to be placed at the frequency where the magnitude of the uncompensated system is G(j) = −10 log10  dB. Then, m is obtained by finding the corresponding frequency in the uncompensated Bode plot.
1. Determine the pole and zero of the lead compensator.
1. Check whether or not the compensator fulfills the design requirements. To do so, draw the Bode plot of the compensated system and check the resulting phase margin and check whether or not the system response meet the desired characteristics. Repeat the design steps for a different m if necessary.

A typical Bode plot of a lead compensator is shown in Figure 3-2.
[image:]
Figure 3-2: Bode plot of a typical lead compensator

[bookmark: _Toc522262902][bookmark: _Toc10546862]3.2 Implement

In this lab, you will design a lead compensator for the speed control of the DC motor.

Designing the Lead Compensator

Recall that the input voltage to output speed transfer function for the QUBE-Servo is given by:

Equation 3-11

As stated in the background section, we want to design a controller that is in series with an integrator to guarantee zero steady-state. For the design purpose of the lead compensator, we assume that the integrator is part of the plant model, i.e.:

Equation 3-12

The control design should fulfill the following design requirements for steady-state error (ess), peak time (tp), percentage overshoot (PO), phase margin (PM) and system bandwidth (m):

Equation 3-13

1. What is the transfer function representation of Pi(s)?
1. Find the magnitude of the frequency response of the system transfer function Equation 3-12 that is in series with an integrator, |Pi(s)|, in terms of the frequency .
1. The system has a gain of 1 (or 0 dB) at the crossover frequency c. Find an expression for the crossover frequency in terms of the model parameters K and  for Pi(s). Use this expression to determine the crossover frequency for the DC motor using the following nominal parameters K = 22.6 rad/s/V and  = 0.12 s.
1. Open Bode_Plot.m. You will use this script in the proceeding steps to generate a series of Bode plots as part of the lead compensator design process.
1. In the script, set the following variables K = 22.6 rad/s and tau = 0.12 s.
1. Run the script.
1. As shown in Figure 3-3, the script will generate a series of Bode plots. Plot A is a Bode diagram of Pi(s). Make a note of the phase margin (in deg) and phase margin/crossover frequency (in rad/s) displayed in the plot. These values are automatically calculated by the script. Take a screenshot of your results.
[image:]
Figure 3-3: Bode plots generated after running Bode_Plot.m
1. Using Plot A, determine the proportional gain Kc that is necessary such that KcPi(s) has a crossover frequency of 35 rad/s (about half the desired closed-loop bandwidth). Hint: Click the magnitude plot in Plot A to add a Data Cursor to the plot. Use the cursor to make necessary measurements off the plot.
1. Once you have determine the proportional gain Kc that is necessary such that KcPi(s) has a crossover frequency of 35 rad/s, update the value of Kc in Bode_Plot.m.
1. Re-run the script. Plot B is a Bode diagram of KcPi(s). Does the Bode plot indicate a crossover frequency of 35 rad/s? The Take a screenshot of your results.
1. Use Equation 3-3 and the Phase Margin (Pm) value given in Plot B to determine the additional phase margin m that the lead compensator needs to add for the system KcPi(s).
1. Use Equation 31- to calculate .
1. Using the calculated  and Plot B, determine m.
1. Does m meet the design requirement of m ≥ 75 rad/s?
1. Determine the transfer function of the lead compensator Glead(s). Start by evaluating T.
1. Determine the pole and zero location of the lead compensator.
1. In the script, set the values of variables T and alpha as calculated above.
1. Re-run the script to generate the Bode plot of your lead compensator Glead(s) (Plot C). Verify that you have the desired phase margin at the desired frequency.
1. Using Plot D, validate your final results using the closed-loop Bode plot of the system with proportional gain Kc and lead compensator Glead(s). Do you have the desired phase margin at the desired frequency? Take a screenshot of your results.
Validation

1. Open Lab2_3_Lead_Compensator_Design.slx. The model implements the controller shown in Figure 3-1. The control parameters Kc, alpha, and T are automatically obtained from the MATLAB® Workspace. Alternatively, you may set these values manually.
1. Set the Signal Generator parameters as follows:
30. Amplitude (rad/s): 10
30. Frequency (Hz): 0.2
30. Offset (rad/s): 30
1. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. Does the system response match the desired characteristics? Try varying the value of Kc and see if you can improve the overall system response. Take screenshots of your results. A sample system response is shown in Figure 3-4.
[image:] [image:]
Figure 3-4: Sample system response using a lead controller
[bookmark: _Toc522262903][bookmark: _Toc10546863]3.3 Analyze

3-1 What is the transfer function representation of Pi(s) that you determined in Step 1?

3-2 What is the expression for the magnitude response in terms of frequency that you derived in Step 2?

3-3 What is the crossover frequency that you calculated in Step 3?

3-4 What are the phase margin (in deg) and phase margin/crossover frequency (in rad/s) you obtained in Step 7?

3-5 How did your derived crossover frequency form Step 3 compare with the phase margin/crossover frequency you obtained using MATLAB® in Step 7?

3-6 Attach a screenshot of the Bode plot of Pi(s) which you obtained in Step 7.

3-7 What is the proportional gain Kc that is necessary such that KcPi(s) has a crossover frequency of 35 rad/s? Attach a screenshot of the Bode plot of KcPi(s) confirming your results.

3-8 What are the phase lead m, , and m that you determined in Steps 11 through 13?

3-9 Does m meet the design requirement of m ≥ 75 rad/s? How you could do to ensure you meet this requirement?

3-10 What is the transfer function representation of Glead(s)?

3-11 Where are the locations of the pole and zero of the lead compensator? Attach a screen shot of the Bode plot of your lead compensator.

3-12 Attach a screenshot of the closed-loop bode plot with proportional gain Kc and lead compensator Glead(s). Do you have the desired phase margin at the desired frequency?

3-13 When you implemented your lead compensator, did the system response match the desired characteristics? Attach a screenshot of your results.

3-14 How did varying the value of Kc affect the response of the overall system? Attach a screenshot of your results.

[bookmark: _Toc522262904][bookmark: _Toc10546864]Lab 3: DC Motor Position Control

[image:]
Figure 0-1: Pick and place machines for PCB manufacturing are a great example of position control

For a wide variety of applications from robotics, to manufacturing and industrial automation, the accurate position control of DC motors is an essential skill. The hobby market, including RC vehicles, is also dominated by servo motors that are implemented as a combination of a brushed DC motor, sensor, and closed-loop position controller. As with many other applications of control systems, there are several methods that can be employed to control the position of a DC motor. We will briefly cover the most common approach, PID control, followed by a more specialized application of a compensator.

[bookmark: _Toc522262905][bookmark: _Toc10546865]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Design PD control parameters to meet position control specifications.

1. Analyze the response of a position controller.

1. Assess the steady-state error of a position controller.
[bookmark: _Toc10546866]
Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc522262906][bookmark: _Toc10546867]Expected Deliverables

In this lab, you will collect the following deliverables:

· Calculated control gains to meet the specifications
· Measured position response to the designed control gains
· Measured peak time and percent overshoot
· Evidence of the effect of the design parameters on the control response

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.

[bookmark: _Toc522262907][bookmark: _Toc10546868]Section 1: Quantitative PD Control Design

[bookmark: _Toc522262908][bookmark: _Toc10546869]1.1 Theory and Background

Control of motor position is a natural way to introduce the benefits of derivative action. In this experiment a proportional-integral-derivative controller is designed according to specifications. The closed-loop PID control block diagram is shown in Figure 1-1.

[image:]
Figure 1-1: DC motor PID closed-loop block diagram

The PID transfer function that represents the diagram Figure 3.1-1 is

Equation 1-1

where kp is the position proportional control gain, kd is the derivative control gain, ki is the integral control gain, bsd is the set-point weight on the reference angular rate ωd, and bsp is the set-point weight on the reference position θd.
PD Control Design

The integral term will not be used to control the servo position. In the case of the Controls Board DC motor, an integral gain is not necessary to control the position of the inertia disk. By setting ki = 0 and bsp = 1 in the PID control Equation 1-1 and taking its Laplace transform, the PD transfer function is

Equation 1-2

The Quanser Controls Board DC motor voltage-to-position transfer function is

Equation 1-3

where K = 22.6 rad/(V s) is the model steady-state gain, τ = 0.12 s is the model time constant, ϴm(s) = θm(t)} is the motor / disk position, and Vm(s) = vm(t)} is the applied motor voltage. If desired, you can conduct an experiment to find more precise model as outlined in the experimental modeling laboratory.

Using the PD control Equation 1-2, the closed-loop transfer function of the motor position controller is

Equation 1-4

The position controller used in this case will be implemented with bsd = 0, which yields a variation of the standard PD controller.

[bookmark: _Toc509993540]Rate Feedback Position Control

To improve the performance of the controller, a variation of the classic PD control will be used: rate feedback control illustrated in Figure 1-2. Unlike the standard PD, only the negative velocity is fed back (i.e. not the velocity of the error) and a low-pass filter will be used in-line with the derivative term to suppress measurement noise. The combination of a first order low-pass filter and the derivative term results in a high-pass filter H(s) which will be used instead of a direct derivative.

[image:]
Figure 1-2: Block diagram of rate feedback control

When the velocity reference set-point weight is set to zero as outlined in the previous section, the resultant PD control transfer function is

Equation 1-5

This is a second-order transfer function. Recall the standard second-order transfer function

Equation 1-6

[bookmark: _Toc522262909][bookmark: _Toc10546870]1.2 Implement

1. Find the proportional and derivative gains required for the DC motor closed-loop transfer function given in Equation 1-5 to match the standard second-order system in Equation 1-6. Your gain equations will be a function of ωn and ζ.
1. For the response to have a peak time tp of 0.15 s and a percentage overshoot of 2.5 %, the natural frequency and damping ratio needed are ωn = 32.3 rad/s and ζ = 0.76. Using the model parameters given above in Section 1.1 (or those you found previously through a modeling lab), calculate the control gains needed to satisfy these requirements.
1. Open the Simulink® model Lab3_1_Quantitative_PD_Control.slx.

[image:]
[bookmark: _Toc510014204]Figure1-3: Simulink® model for PD position control

1. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. In the Reference Input section set:
· Amplitude (rad) to 0.50
· Frequency (Hz) to 0.40
1. In the PD Controller section, enter the control gains that you found in Step 2.
1. Capture the position response found in the Position (rad) scope and control signal used in the Vm (V) scope.
1. Measure the peak time and percentage overshoot of the measured position response.
1. If your response does not match the above overshoot and peak time specifications, try tuning your control gains until they are satisfied. Save the resulting response.
1. Stop the model by clicking on the Stop button.
[bookmark: _Toc522262910][bookmark: _Toc10546871]1.3 Analyze

1-1 What expressions for the proportional and derivative gains did you find in Step 1?

1-2 What control gains did you calculate would satisfy the performance requirements in Step 2?

1-3 Attach the response that you saved in Step 8.

1-4 What peak time and percentage overshoot did you measure in Step 9? Does the response that you measured meet the overshoot and peak time specifications given in Step 2 without saturating the motor (going beyond ±5 V)?

1-5 If your measured response did not meet the specifications, attach your tuned response, and comment on how you modified your controller to arrive at those results.

1-6 What effect does changing the two specifications, ωn and ζ, have on the generated control gains and measured response?

[bookmark: _Toc522262911]

[bookmark: _Toc10546872]Section 2: Steady-State Error

[bookmark: _Toc522262912][bookmark: _Toc10546873]2.1 Theory and Background

PID Control

The voltage-to-position transfer function of the Controls board is given as follows:
Equation 2-1

where K = 22.6 rad/s/V is the model steady-state gain,  = 0.12 s is the model time constant,] is the load disk position, and is the applied motor voltage. If desired, you can conduct an experiment to find more precise model parameters, K and , for your particular Controls board.

[image: QUBE-Servo Steady State Error Workbook (Instructor)]
Figure 2-1: Block diagram of PID control

Based on the PD controller designed in the DC Motor Position Control lab, we will investigate the steady-state error of a ramp reference signal. Recall the block diagram of a generic PID controller in Figure 2-1. The ideal PID controller with proportional gain kp, integral gain ki and derivative gain kd can be expressed mathematically as:

Equation 2-2

with the corresponding transfer function:

Equation 2-3

Rate Feedback Control

To improve the performance of the controller, a variation of the classic PID control will be used: rate feedback control illustrated in Figure 2-2. Unlike the standard PID, the negative velocity is fed back (i.e. not the derivative of the error). The applied motor voltage for the controller will now be:

Equation 2-4

with corresponding transfer function:

Equation 2-5

With the voltage-to-position transfer function from Equation 2-1, the closed-loop PID transfer function θl(s)/θd(s) becomes:

Equation 2-6

[image: QUBE-Servo Steady State Error Workbook (Instructor)]
Figure 2-2: A variation of classic PID control
Final Value Theorem

The Final Value Theorem can be used to determine the steady-state or final value of the system output y(t) given its Laplace transform Y(s). For a system with an unstable pole (i.e. a pole in the right half of the s-plane), the final value is unbounded. If the system is marginally stable with a complex conjugate pole pair on the imaginary axis, the output of the system will be oscillatory and the final value is not defined. For a stable system response (i.e. all poles of the system are strictly in the left half of the s-plane), the following holds:

Equation 2-7

Steady-State Error

Steady-state error is illustrated in the ramp response given in Figure 2-3 and is denoted by the variable ess. It is the difference between the reference input and output signals after the system response has settled. Thus, for a time t when the system is in steady-state, the steady-state error equals:

Equation 2-8

where rss(t) is the value of the steady-state input and yss(t) is the steady-state value of the output. The error transfer function E(s) is then given by the Laplace transform of the error in Equation 2-8 as:

Equation 2-9

[image: QUBE-Servo Steady State Error Workbook (Instructor)]
Figure 2-3: Steady-state error in ramp response
[bookmark: _Toc522262913][bookmark: _Toc10546874]2.2 Implement

In this section you will implement the modified PID position controller (using rate-feedback) as described in Section 2.1. In the following steps you will apply a ramp input to the DC motor and measure the resulting steady-state error for different control gains.

1. Open the model Lab3_2_Steady_State_Error.slx.

[image:]
Figure 2-4: PID Simulink® model

2. Set the following parameters under Reference Input:
a. Amplitude: 5 rad
b. Frequency: 0.2 Hz
3. Set the following parameters under PID Controller:
a. kp: 1
b. ki: 0
c. kd: 0
4. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
5. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
6. Observe the response of the system. Take a screen shot of your results.
7. The model applies a ramp input to the DC motor, changing the position of the load disc accordingly. The controller stops after 10 seconds.
8. Using the Cursor Measurement tool, measure and record the steady-state error.
9. Set the following parameters under PID Controller:
a. kp: 5
b. ki: 0
c. kd: 0
10. Re-start the model and observe the response of the system. Determine the steady-state error for the new gains and take a screen shot of your results.
11. Set the following parameters under PID Controller:
a. kp: 5
b. ki: 0
c. kd: 0.2
12. Re-start the model and observe the response of the system. Determine the steady-state error for the new gains and take a screen shot of your results.
13. Without changing the values of kp and kd, vary the value of ki (e.g. set ki to 5 then 20). Each time re-start the model and observe the response of the system. Determine the steady-state error for each new gain and take a screen shot of your results.
[bookmark: _Toc522262914][bookmark: _Toc10546875]2.3 Analyze

2-1 Based on the closed-loop transfer function with PID controller given in Equation 2-6, derive the error transfer function E(s).

2-2 Derive the error transfer function E(s), for a ramp input with the following transfer function, R(s), where R0 is the slope of the ramp:

2-3 Use the final value theorem, given in Equation 2-7, to derive the theoretical steady-state error expression, ess, for a ramp input when using a P controller (i.e. ki = 0 and kd = 0), PD controller (i.e. ki = 0), and a PID controller.

2-4 Calculate the theoretical steady-state errors for the different P, PD, and PID controllers implemented in this lab. Use the following nominal gain and time constant values K = 22.6 rad/s/V and t = 0.12 s.

2-5 Compare the previously calculated theoretical steady-state errors with the experimental stead-state errors you obtained during this lab.

2-6 How did each of the control gains (i.e. kp, ki, and kd) affect steady-state error?

[bookmark: _Toc522262915][bookmark: _Toc10546876]Section 3: Lead Compensator Design using Root Locus

[bookmark: _Toc522262916][bookmark: _Toc10546877]3.1 Theory and Background

The root locus method will be used to design a lead compensator to control the position of the DC motor servo system. The block diagram of the closed-loop system with a generic compensator Gc(s) and the open-loop plant transfer function P(s) is shown in Figure 3-1.
[image:]
Figure 3-1: Closed-loop system to control DC motor position

For the root locus, the forward loop transfer function is used to assess what gains to be used:

Equation 3-1

The root locus plot usign the Quanser Controls Board plant and an example controller is shown in Figure 3-2.
[image:]
Figure 3-2: Example root locus of a system
As shown in Figure 3-2, the natural frequency and damping ratio requirements in this example are 32.6 rad/s and 0.636. From these second-order system specification, the desired pole locations can be found. The damped natural frequency can be found using:

Equation 3-2

And the location of the desired poles along the real-axis is:

Equation 3-3

The location of the root locus asymptote along the real-axis in the root locus of can be found using equation:

Equation 3-4

where pi and zj are the pole and zero locations, n is the number of finite poles, and m is the number of finite zeroes of . The angles of departures can be found using the expression:

Equation 3-5

where .

The lead compensator can be expressed by the following transfer function:

Equation 3-6

where the zero and pole of the compensator C(s) are located at -z0 and -p0 respectively, and K1 is a proportional gain. In a lead compensator, the pole leads the zero in the complex plane. Thus the pole is always located to the left of the zero in the complex plane, i.e. .

Recall the transfer function P(s) is the Laplace of the open-loop voltage to position system defined by:

Equation 3-7

where K is the motor steady-state gain, is the motor time constant, is the Laplace Transform of the motor or inertial disk position, and is the Laplace Transform of the applied motor voltage.

The block diagram in Figure 3-3 shows a more detailed view of the control system.
[image:]
Figure 3-3: Lead compensator to control the DC motor position

Design a lead compensator that meets the following time-domain requirements for the steady-state error (ess), peak time (tp) and percentage overshoot (PO):

Equation 3-8

Based on the peak time and percent overshoot required, we need the following natural frequency and damping ratio in our root locus design:

Equation 3-9

The root locus plots shows how the closed-loop poles move as the proportional gain, K1, is increased.

[bookmark: _Toc522262917][bookmark: _Toc10546878]3.2 Implement

Controller Design using Root Locus

In this section you will design a lead compensator, similar to Figure 3-3, to control the position of the DC motor servo system using root locus plots.

1. Analytically determine the locations of the closed-loop poles in order to meet the design specifications given in Equation 3-9. Hint: In order to meet the natural frequency and damping ratio requirement given in Equation 3-9, the closed-loop poles should be located at –𝜎 ± 𝑗d.
2. Open Root_Losus_Plot.m. You will use this script to generate a series of root locus and step response plots as part of this lab.
3. In the script, set the following variables K = 22.6 rad/s/V and tau = 0.12 s (alternatively use the parameters you have determined for your specific board).
4. Run the script.
5. As shown in Figure 3-4, the script will generate a series of plots. Plot A is a root locus plot of P(s). The open-loop poles of P(s) are marked with the symbol “x” in Plot A. Take a screenshot of Plot A.

[image:]
Figure 3-4: Plots generated by Root_Locus_Plot.m
6. Similar to the previous step, generate a root locus plot of Gc(s)P(s) where Gc(s) includes proportional gain of 1, and compensator C(s) with pole and zero at -15 and -5 respectively. To do this, set the following variables in the script:
· K1 = 1
· p0 = 15 (i.e. pole is located at -15)
· z0 = 5 (i.e. zero is located at -5)
7. Re-run the script. Plot B is a root locus plot Gc(s)P(s). Identify the open-loop poles using Plot B. Poles are marked with the symbol “x” and zeroes are marked with the symbol “o”. Does the compensator satisfy the design specifications?
8. Modify Gc(s)P(s) this time setting variable K1 = 10. Re-run the script and observe the effect on the results of the root locus plot. Identify the open-loop poles using Plot B. Does this compensator satisfy the design specifications?
9. Analytically determine the locations of the zero and pole of the lead compensator given in Equation 3-1 in order to satisfy the requirements given in Equations 3-8 and 3-9. To do this, the root locus lines have to go through where the desired closed-loop poles are located (i.e. –𝜎 ± 𝑗d). Once you have determined the required pole and zero, determine the values of z0 and p0 for the compensator.

Hint: Find where the asymptote of the root locus has to be using equation(s) above. Then express the asymptote equation in terms of the lead compensator pole and zero location. Furthermore, place the zero somewhere in the left-hand plane and not on the imaginary axis, i.e. |z0 | > 0, to cancel one of the open-loop poles. Once the zero position is set, calculate where the compensator pole should be.
10. Generate a root locus plot of the lead compensator you designed in the previous step (i.e. with the new pole and zero). To do this, set the following variables in the script:
a. K1 = 1
b. p0 = as determined in the previous step
c. z0 = as determined in the previous step
11. Run the script. Plot B will display the root locus of Gc(s)P(s) using the new pole and zero.
[image:]
Figure 3-5: Root locus plot showing required gain K1
12. The final step of the lead compensator design process it to identify the necessary gain (K1) required to place the closed-loop poles in the required location. To do this, place a Data Cursor on Plot B, where the root locus plot interests with the dotted line representing the desired natural frequency (see Figure 3-5). The data tip displays the gain required to meet the frequency, damping, and closed loop pole requirements. Make a note of the required gain. Take a screenshot of your results.
13. Before validating your compensator on the Controls board, plot a step response of the closed loop controller. To do this, in the scrip set variable K1 to the value you determine in the previous step.
14. Re-run the script. As shown in Figure 3-6, Plot C is the step response of the closed loop lead compensator. Using a Date Cursor, determine if the measured percent overshoot and peak time meet the requirements of Equation 3-8.
[image:]
Figure 3-6: Step response of the plant using the designed lead compensator

Implement Controller
In this section you will implement the lead compensator you have designed on the Controls Board.
15. Open Lab3_3_Root_Locus_Lead_Compensator.slx.
16. The control parameters z0, p0, and K1 are automatically obtained from the MATLAB® Workspace. Alternatively, you may set these values manually.
17. Set the following parameters for the signal generator:
a. Amplitude: 0.5
b. Frequency: 0.4
18. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
19. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
20. Your response should look similar to Figure 3-7. Take a screenshot of your results.
21. Stop the model. Measure the percent overshoot, rise time and steady-state error. If these values do not meet the design requirements given in Equation 3-8, try tuning the compensator gain K1 to achieve the desired results.
[image:]
[image:]
Figure 3-7: Sample response using the designed lead compensator
[bookmark: _Toc522262918][bookmark: _Toc10546879]3.3 Analyze
3-1 What are the locations of the closed loop pole you calculated in Step 1?
3-2 Present transfer function P(s) and its root locus plot.
3-3 Present the root locus plot of Gc(s)P(s) where Gc(s) includes proportional gain K1 = 1, and compensator C(s) with pole located at -15 and zero located at -5. Did the compensator satisfy the design requirements?
3-4 Present the root locus plot of the previous Gc(s)P(s) when K1 = 10. Did the compensator satisfy the design requirements? How do different values of K1 affect the root locus plot?
3-5 Analytically calculate the location of the asymptote (σa) and angles of departure (a) for this system when using the following compensator: Gc(s) = (s+5)/(s+15). Compare your analytical results with the root locus plot you obtained in Step 7.
3-6 Present the lead compensator that you designed, which satisfies the design criteria. Show your calculations.
3-7 What value of K1 places the closed-loop poles at the desired location? Present the root locus plots of the lead compensator showing the location of the closed-loop poles for the value of K1 which places the closed-loop poles at the desired location.
3-8 Present the simulated closed-loop step response of your lead compensator.
3-9 Present the system response using your designed lead compensator when implemented on the Controls Board.
3-10 Did the measured peak time, percent overshoot, and steady-state error meet the design criteria without saturating the motor (going beyond ±5 V)?

[bookmark: _Toc522262919][bookmark: _Toc10546880]Lab 4: Inverted Pendulum Control

[image:]
Figure 0-1: A landing rocket can be viewed as a similar control challenge to an inverted pendulum

Balancing an inverted pendulum may seem like a purely academic challenge, but the control algorithm that is used is analogous to a wide variety of problems from Segway scooters to rockets. More broadly, the stabilization of unstable systems is a ubiquitous problem that requires much the same approach to controller design and development as the approaches covered in this lab. Complex systems often require more complex controllers to achieve a desired level of performance, but ultimately the approaches presented in this lab represent an important collection of skills for any modern control systems engineer.

[bookmark: _Toc522262920][bookmark: _Toc10546881]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Design a controller to balance an inverted pendulum using pole placement.
1. Design an optimized controller for an inverted pendulum.
1. Implement a hybrid swing-up controller for energy-based automatic inversion.
[bookmark: _Toc522262922][bookmark: _Toc10546882]
Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc522262921]

[bookmark: _Toc10546883]Expected Deliverables

In this lab, you will collect the following deliverables:

· Calculated control gains to meet the specifications
· Simulated response to the designed control gains
· Measured response on hardware including performance analysis
· Optimal controller design for the inverted pendulum
· Understanding of the effect of the design parameters on the controller
· Energy of the pendulum when inverted
· Control gains required to inverted the pendulum automatically

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.
[bookmark: _Toc522262923]

[bookmark: _Toc10546884]Section 1: Pendulum Moment of Inertia

[bookmark: _Toc522262924][bookmark: _Toc10546885]1.1 Theory and Background

The free-body diagram of the pendulum module of the Controls Board is shown in Figure 1-1.
[image:]

Figure 1.1: Free-body diagram of pendulum

From the free-body diagram in Figure 1-1, the resulting nonlinear equation of motion of the pendulum is:

Equation 1-1

where Jp is the moment of inertia of the pendulum at the pivot axis, Mp is the total mass of the pendulum assembly, and Lp is the length of the pendulum (from pivot to end). The center of mass position is at Lp/2, as depicted in Figure 1-1.

The moment of inertia of the pendulum can be found experimentally. Assuming the pendulum is not actuated, linearizing Equation 1-1 and solving for the differential equation yields:

Equation 1-2

where f is the measured frequency of the pendulum as the arm remains rigid. The frequency is calculated using:

Equation 1-3

where ncyc is the number of cycles and Δt is the duration of these cycles. Alternatively, Jp can be calculated using the moment of inertia expression:

Equation 1-4

where r is the perpendicular distance between the element mass dm and the axis of rotation.

[bookmark: _Toc522262925][bookmark: _Toc10546886]1.2 Implement

1. Analytically find the moment of inertia acting about the pendulum pivot using the free-body diagram. Make sure you evaluate it using the parameters given in Table 1-1. Hint: For solid objects with a uniform density, you can express the differential mass in terms of differential length.

Table 1-1: Quanser Control Board rotary pendulum module parameters
	Symbol
	Description
	Value

	mr
	Rotary arm mass
	0.095 kg

	Lr
	Rotary arm length
	0.085 m

	Jr
	Rotary arm moment of inertia
	5.72 x 10-5 kg.m2

	mp
	Pendulum link mass
	0.024 kg

	Lp
	Pendulum link length
	0.129 m

1. Open the model Lab4_1_Moment_of_Inertia.slx. You will use this model to experimentally determine the moment of inertia acting about the pendulum pivot.
1. Make sure the ELVIS III is connected to your PC USB port and the USB Power LED is lit green.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. With the controller running and while holding the rotary arm in place, manually perturb the pendulum. Take a screenshot of your results. The response should be similar to Figure 1-2.

[image:]
Figure 1-2: Free-oscillation response of pendulum
1. Determine the frequency of the obtained results and calculate the moment of inertia of the pendulum.
1. Click Stop to stop the model.

[bookmark: _Toc522262926][bookmark: _Toc10546887]1.3 Analyze

1-1 What is analytical moment of inertia that you calculated in Step 1?

1-2 Attach a screenshot of the free oscillation response of pendulum.

1-3 What is the experimental moment of inertia that you determined from your results?

1-4 Compare the moment of inertia calculated analytical and found experimentally. Is there a large discrepancy between them?

[bookmark: _Toc522262927][bookmark: _Toc10546888]Section 2: State-Space Modeling of the Pendulum Module

[bookmark: _Toc522262928][bookmark: _Toc10546889]2.1 Theory and Background

The rotary pendulum model is shown in Figure 2-1. The rotary arm pivot is attached to the Controls Board system and is actuated. The arm has a length of Lr, a moment of inertia of Jr, and its angle θ increases positively when it rotates counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control voltage is positive (Vm > 0).

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center of mass is at Lp / 2. The moment of inertia about its center of mass is Jp, which was experimentally determined in the previous section. The inverted pendulum angle  is zero when it is hanging downward and increases positively when rotated CCW.
[image: QUBE-Servo 2 State Space Modeling Workbook (Instructor)]

Figure 2-1: Rotary inverted pendulum model
The equations of motion (EOM) for the pendulum system were developed using the Euler-Lagrange method. This systematic method is often used to model complicated systems such as robot manipulators with multiple joints. The total kinetic and potential energy of the system is obtained, then the Lagrangian can be found. A number of derivatives are then computed to yield the EOMs.

The resultant nonlinear EOM are:

Equation 2-1

and:

Equation 2-2

with an applied torque at the base of the rotary arm generated by the servo motor as described by the equation:

Equation 2-3

When the nonlinear EOM are linearized about the operating point, the resultant linear EOM for the inverted pendulum are defined as:

Equation 2-4

and:

Equation 2-5

Solving for acceleration terms yields:

Equation 2-6

and:

Equation 2-7

where:

Equation 2-8

Linear State-Space Model

The linear state-space equations are:

Equation 2-9

and:

Equation 2-10

where x is the state, u is the control input, A, B, C, and D are state-space matrices. For the rotary pendulum system, the state and output are defined:

Equation 2-11

and:

Equation 2-12

[bookmark: _Toc522262929][bookmark: _Toc10546890]2.2 Implement

In this lab you will develop a state-space model of the Controls board pendulum module. Using the model shown in Figure 2-2, you will compare the simulated response of the pendulum module with its actual response.

[image:]
Figure 2-2: Simulink® model that applies a step voltage and displays measured and simulated pendulum responses

Build State-Space Model

1. Based on the sensors available on the pendulum system, find the 𝐶 and 𝐷 matrices in Equation 2-10.
1. Using Equations 2-6 and 2-7 and the defined state in Equation 2-11, derive the linear states-pace model of the pendulum system. Your derived model will be a function of the system parameters.
1. Open state_space_model.m. You will use this script to input the experimental value of moment of inertia (Jp) as well as the derived A, B, C, and D matrices.
1. In the script, set the variable Jp to the value you experimentally found in the previous section.
1. In the script, set matrices A, B, C, and D using the state-space model you derived earlier. You may elect to either enter the calculated values of the matrices or enter them parametrically (as a function of the system parameters) and allow the script to calculate the matrices.

Model Validation

1. Open Lab4_2_state_space_model.xls.
1. The state-space model matrices A, B, C, and D are automatically obtained from the MATLAB Workspace. Alternatively, you may set these values manually.
1. Make sure the ELVIS III is connected to your PC USB port and the USB Power LED is lit green.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. The scopes should indicate responses similar to Figure 2-3. Take a screenshot of your results.
1. Note that the viscous damping of each inverted pendulum can vary slightly from system to system. If your model does not accurately represent your specific pendulum system, try modifying the damping coefficients Dr and Dp in state_space_model.m to obtain a more accurate model.

[image:] [image:]
Figure 2-3: State-space modeled and actual response of the pendulum module
[bookmark: _Toc522262930][bookmark: _Toc10546891]2.3 Analyze

2-1 What are the C and D matrices that you found in Step 1?

2-2 What is the state-space model that you derived?

[bookmark: _Toc522262931]2-3 Attach screen shot of the actual and model responses of the pendulum. Does your model represent the actual pendulum well? If not, explain what factors may contribute to the discrepancies.

[bookmark: _Toc10546892]Section 3: Inverted Pendulum Control

[bookmark: _Toc522262932][bookmark: _Toc10546893]3.1 Theory and Background

The design of a balance controller for an inverted pendulum begins with the definition of a linear state-space model. The standard linear state-space equations are

Equation 3-1

and

Equation 3-2

where x is the state, y is the control output, and u is the control input. A, B, C, and D are the state-space matrices that represent the system. For the rotary pendulum system, the state and output are defined as

Equation 3-3
]
and

Equation 3-4

where θ is the angle of the arm, and α is the angle of the pendulum. In the output equation, only the position of the servo and link angles are being measured. Based on this, the C and D matrices in the output equation are

Equation 3-5

and

Equation 3-6

The velocities of the servo and pendulum angles can be computed in the digital controller using the encoder reading by taking the derivative and filtering the result though a low-pass filter.

The linear state-space model that represents the Quanser Controls Board inverted pendulum system is therefore

Equation 3-7

Your model may slightly differ based on the specific model parameters of your particular Quanser Controls Board, but this model should be representative of a general example.

Stability

The stability of a system can be determined from its poles:
· Stable systems have poles only in the left-hand plane.
· Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on the imaginary axis.
· Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.
The poles are the roots of the system's characteristic equation. From the state-space model, the characteristic equation of the system can be found using

Equation 3-8
det

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues of the state-space matrix A.
[bookmark: _Toc509993550]
Controllability

If the control input u of a system can take each state variable, xi where i = 1 … n, from an initial state to a final state then the system is controllable, otherwise it is uncontrollable.

Rank Test: The system is controllable if the rank, or number of non-zero rows when the matrix is in row echelon form, of its controllability matrix

Equation 3-9

equals the number of states in the system,

rank .

Companion Matrix

If (A, B) are controllable and B has dimension n x 1, then A is similar to a companion matrix. Let the characteristic equation of A be

 Equation 3-10
.

Then the companion matrices of A and B are

Equation 3-11

and

Equation 3-12

Define a transformation matrix W as

where T is the controllability matrix defined in Equation 3-7 and

Then by applying the standard state transformation definition, we can show that

and

[bookmark: _Toc509993552]
Pole Placement

If (A, B) are controllable, then pole placement can be used to design the controller. Given the control law, the state-space in Equation 3-1 becomes

To illustrate how to design gain K, consider the following system

Equation 3-13

and

Equation 3-14

Note that A and B are already in the companion form. We want the closed-loop poles to be at [-1 -2 -3]. The desired characteristic equation is therefore

Equation 3-15

For the gain, apply control and get

The characteristic equation of is

Equation 3-16

Equating the coefficients between Equation 3-16 and the desired polynomial in Equation 3-15
	
	

Solving for the gains, we find that a gain of is required to move the poles to their desired location. We can generalize the procedure to design a gain K for a controllable (A,B) system as follows:

[bookmark: _Toc509993553]Step 1 Find the companion matrices and. Compute.
[bookmark: _Toc509993554]
Step 2 Compute such that the poles of are assigned to the desired locations. Applying the control law to the general system given in Equation 3-11,

[bookmark: _Toc509993555]Step 3 Find to get the feedback gain for the original system (A, B).

[bookmark: _Toc509993556]Remark It is important to do the conversion. Remember that (A, B) represents the actual system while the companion matrices and do not.

Desired Poles

The rotary inverted pendulum system has four poles. As depicted in Figure 3-1, poles p1 and p2 are the complex conjugate dominant poles and are chosen to satisfy the natural frequency, ωn, and damping ratio, ζ, specifications. If we let the conjugate poles be

Equation 3-18

and

Equation 3-19

where , j is the imaginary unit, and is the damped natural frequency. The remaining closed-loop poles,, and, are placed along the real-axis to the left of the dominant poles, as shown in Figure 3-1.

[image:]
Figure 3-1: Desired closed-loop pole locations

[bookmark: _Toc509993557]Feedback Control

The feedback control loop that balances the rotary pendulum is illustrated in Figure 3-2. The reference state is defined

where is the desired rotary arm angle. The controller is

Note that if then, which is the control algorithm used in the pole-placement algorithm.

[image:]
Figure 3-2: State-feedback control loop

[bookmark: _Toc522262933][bookmark: _Toc10546894]3.2 Implement
[bookmark: _Toc509993559]
In this section you will start by designing a balance controller for the inverted pendulum using given specifications. Once you have designed the controller, you will first simulate the controller then proceed to implementing it on the Controls Board.

Controller Design

1. The open-loop poles of the inverted pendulum are located at -16.17, 16.17,
-0.005, and 0. Using the open-loop poles, find the characteristic equation of A.
1. Find the corresponding companion matrices and.
1. Find the location of the two dominant poles, p1 and p2, based on the following specifications
· ζ = 0.7
· ωn = 4 rad/s
1. Give the desired characteristic equation if the other poles are placed at p3 = -30 and p4 = -40.
1. When applying the control to the companion form, it changes to. Find the gain that assigns the poles to their new desired location.
1. Open the MATLAB script Balance_Control_Design.m. You will use this script to calculate the state-space model given in Equation 3-7. Portion of the script is shown in Figure 303.
1. Modify the script, specifically variables k1c, k2c, k3c, and k4c using the companion gainthat you found in Step 5.
1. Run the script.
1. The script automatically determines the controllability of the system. Furthermore, it will automatically calculate the companion matrices and, the controllability matrix T, the companion controllability matrix Tc, the inverse of Tc, and W matrix. It also determines the appropriate gain K, based on the companion gain that you entered in Step 6. Make a note of the calculated gain K. Inspect the code segment in order to understand the functionality of the algorithm.
1. Record the closed-loop poles of the system when using the gain K.
[bookmark: _Toc509993560]
[image:]
Figure3-3: Section of Balance control design script

Simulation

1. Open the model Lab4_3_inverted_pendulum_control_simulated.slx.Shown in Figure 3-4, you will use this model to simulate the controller you designed in the previous section.
[image:]
Figure 3-4: Model for simulating the inverted pendulum controller
1. The feedback gain K is automatically obtained from the MATLAB Workspace. Alternatively, you may enter gain K that you found in the previous section manually.
1. From the Simulink® menu bar select QUARC | Start to run the simulation. The system response should be similar to Figure 3-5.
1. Given the additional implementation specifications:
· Maximum pendulum deflection < 15°.
· Maximum control effort < 5 V.
Measure the simulated response and determine if the additional specifications listed are met.
1. Stop the model by selecting QUARC | Stop.

[image: Untitled] [image: C:\Users\AMOLKI\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Untitled.png]

Figure 3-5: Simulated response of the controller

[bookmark: _Toc509993561]Inverted Pendulum Control

1. Open the model Lab4_3_inverted_pendulum_control.slx.
1. The feedback gain K is automatically obtained from the MATLAB Workspace. Alternatively, you may manually enter gain K that you found previously.
1. Ensure the pendulum is in the hanging down position and is motionless. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. Manually bring up the pendulum to its upright, vertical position. You should feel the voltage kick-in when it is within the range where the balance control engages.
1. Once it is balanced, introduce a ±20 degree rotary arm command by setting Amplitude (deg) to 20 in the model and flip the manual switch to enable the signal generator. The response should look similar to your simulation.
1. Record the measured rotary pendulum responses.
1. Measure the maximum pendulum deflection and voltage used. Are the specifications given in Step 14 satisfied for the implementation?
1. Stop the model by selecting QUARC | Stop.

[bookmark: _Toc522262934][bookmark: _Toc10546895]3.3 Analyze

3-1 Based on the location of the open-loop poles, is the system stable, marginally stable, or unstable? Does that make sense?

3-2 What is the characteristic equation of A?

3-3 What are the corresponding companion matrices and ?

3-4 What is the characteristic polynomial you found in Step 4, and what are the locations of the two dominant poles, p1 and p2?

3-5 What is the gain that assigns the poles to their new desired location?

3-6 Based on the number of states and rank of the controllability matrix is the system controllable?

3-7 Describe the functionality of the code you examined in Step 9 that is used to determine the controllability matrix T, the companion controllability matrix Tc, the inverse of Tc, and the W matrix.

3-8 Record the value of the feedback gain K that was calculated in Step 9.

3-9 What were the closed-loop poles you recorded in Step 10? Have the poles been placed in their desired locations?

3-10 Attach the simulated response of your designed gain?

3-11 What are the specifications of the simulated response? Were the additional specifications from Step 14 met?

3-12 Attach the recorded experimental responses of the pendulum.

3-13 What pendulum deflection and voltage did you measure from them experimental response? Were the specifications satisfied?

[bookmark: _Toc522262935][bookmark: _Toc10546896]Section 4: Optimal Control of an Inverted Pendulum

[bookmark: _Toc522262936][bookmark: _Toc10546897]4.1 Theory and Background

Linear Quadratic Regulator (LQR) theory is a technique that is ideally suited for finding the optimal parameters of the pendulum balance controller. Given that the equations of motion of the system can be described in the form

where A and B are the state and input system matrices, respectively, the LQR algorithm computes a control law u such that the performance criterion or cost function

Equation 4-1

is minimized. The design matrices Q and R hold the penalties on the deviations of state variables from their set-point and the control actions, respectively. When an element of Q is increased, therefore, the cost function increases the penalty associated with any deviations from the desired set-point of that state variable, and thus the specific control gain will be larger. When the values of the R matrix are increased, a larger penalty is applied to the aggressiveness of the control action, and the control gains are uniformly decreased.

In our case the state vector x is defined

Equation 4-2

[image:]
Figure 4-1: Block diagram of balance state-feedback control for rotary pendulum

Since there is only one control variable, R is a scalar. The reference signal xref is set to, and the control strategy used to minimize the cost function J is thus given by

Equation 4-3

This control law is state-feedback control, and is illustrated in Figure 2-1. It is equivalent to PD control.

[bookmark: _Toc522262937][bookmark: _Toc10546898]4.2 Implement

LQR Control Design

In this experiment, the state-space model is already available. Therefore, the effect of changing the Q weighting matrix while R is fixed to 1 on the cost function J will be explored.

1. Open the script LQR_Gain_Calculation.m

[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\lab4\Lab4.4\LQR_parameters_setup.JPG]
Figure 4-2: Script used to setup the balance controller using LQR

1. Ensure that the weighting matrices are set to

 and .

1. Record the gain K that is generated by running the script.
1. Repeat the process using the following weighting matrices

 and .

1. Record the new gain.

[bookmark: _Toc509993566]LQR Balance Control

1. Open the model Lab4_4_optimal_control.slx shown in Figure 4-3.
[image:]
Figure 4-3: model used to balance the pendulum using LQR
1. Setup gain K either from the MATLAB Workspace or manually using the value calculated in Step 3 of the LQR Control Design section.
1. Make sure the ELVIS III is connected to your PC USB port and the USB Power LED is lit green.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. Manually rotate the pendulum in the upright position until the controller engages.
1. Once the pendulum is balanced, set the Amplitude (deg) control to 30 to make the arm angle go between ±30°, and set the Frequency (Hz) control to 0.1.
1. The scopes should look similar to those shown in Figure 4-4. Record the response of the rotary arm, pendulum, and controller voltage.

[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\lab4\Lab4.4\pendulum angle_sample.JPG]
[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\lab4\Lab4.4\motor voltage sample.JPG]
[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\lab4\Lab4.4\rotary arm sample.JPG]
Figure 4-4: Rotary pendulum response
1. Stop the model. Update the feedback gains with the values in Step 5 of the LQR Control Design section and repeat your analysis.
1. Finally, using LQR_Gain_Calculation.m adjust the value of R to 0.8 and record a new set of feedback gains. Update the feedback gains in the Simulink® model with these new gains, and observe and record the resultant gain and response.
1. Use LQR_Gain_Calculation.m to generate a set of new feedback gains to meet the following maximum control specifications:
14. Pendulum deflection: ±5°
14. Overshoot: 20%
14. Peak time: 0.8 s
Describe your experimental procedure to find the necessary control gain.
Note: Assume a value of R = 0.8 during the tuning.
1. List the resulting LQR Q matrix and control gain K used to yield the desired results. Run Lab4_4_optimal_control.slx with the new gain of K and record the responses. Briefly outline how the response changed.
1. Stop the model.

[bookmark: _Toc522262938][bookmark: _Toc10546899]4.3 Analyze

4-1 What gain was generated in Step 3?

4-2 What gain was generated in Step 5?

4-3 How does changing q11 affect the generated control gain? Based on the description of LQR in the background section, is this what you expected?

4-4 What is the response of the system in Step 11?

4-5 Examine and describe the change in the system in Step 14.

4-6 What is the effect of decreasing the value of R on the response of the system?

4-7 Adjust the diagonal elements of Q matrix according to the specifications in Step 16. Describe your experimental procedure to find the necessary control gain.

4-8 List the resulting LQR Q matrix and control gain K used to yield the desired results. Attach the responses using this new control gain and briefly outline how the response changed.

[bookmark: _Toc522262939][bookmark: _Toc10546900]Section 5: Swing-Up Hybrid Control

[bookmark: _Toc522262940][bookmark: _Toc10546901]5.1 Theory and Background

Energy Control

In theory, if the arm angle of the pendulum system is kept constant and the pendulum is given an initial perturbation, the pendulum will keep on swinging with constant amplitude. The idea of energy control is based on the preservation of energy in ideal systems: The sum of kinetic and potential energy is constant. However, friction will damp the oscillation in practice and the overall system energy will not be constant. It is possible to measure the loss of energy with respect to the pivot acceleration, which in turn can be used to find a controller to swing up the pendulum.

The dynamics of the pendulum can be redefined in terms of the pivot acceleration, u, as

Equation 5-1

Here, u is the linear acceleration of the pendulum.

The potential energy of the pendulum is

and the kinetic energy is

The pendulum angle, α, and the lengths of the pendulum are illustrated in the free body diagram in Figure 3-1.

[image:]
Figure 5-1: Rotary pendulum response

The potential energy is zero when the pendulum is at rest at and equals when the pendulum is upright at . The sum of the potential and kinetic energy of the pendulum is

Equation 5-2

Differentiating Equation 5-2 yields

Equation 5-3

Using Equation 5-1, the terms can be rearranged as

which eventually yields

Since the acceleration of the pivot is proportional to current driving the arm motor and thus also proportional to the drive voltage, it is possible to control the energy of the pendulum with the proportional control law

Equation 5-4

By setting the reference energy to the pendulum potential energy (), the control law will swing the link to its upright position. Notice that the control law is nonlinear because the proportional gain depends on the cosine of the pendulum angle α. Further, the control changes sign when changes sign and when the angle is ±90 degrees.

For the system energy to change quickly, the magnitude of the control signal must be large. As a result the following swing-up controller is implemented in the controller as

Equation 5-5

where is a tunable control gain and the function saturates the control signal at the maximum acceleration of the pendulum pivot, . The expression is used to enable faster control switching.

[bookmark: _Toc509993570]Hybrid Control

The energy swing-up control in Equation 5-4 (or Equation 5-5) can be combined with the balancing control law from the Balance Control Lab to obtain a control law that swings up the pendulum and then balances it.

Similarly, the balance control is to be enabled when the pendulum is within ±20 degrees. When it is not enabled, the swing-up control is engaged. Thus the switching can be described mathematically by

Equation 5-6

[bookmark: _Toc522262941][bookmark: _Toc10546902]5.2 Implement

The model shown below implements the algorithm described in Section 5.1 to swing-up and balance the pendulum.

[bookmark: _Toc509993572]Energy Control

1. Open LQR_Gain_Calculation.m and run the script.
1. Open the model Lab4_5_hybrid_swingup_control.slx.
[image: C:\Users\jpineros\Documents\2018\curriculum\control systems\Individual Labs\MATLAB2018a\lab4\Lab4.5\Hybrid_control_model.JPG]
Figure 5-2: Simulink® model for hybrid swing-up control
1. Ensure that the swing-up controller is disabled by setting the gain, μ, to 0.
1. Make sure the ELVIS III is connected to your PC USB port and the USB Power LED is lit green.
1. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
1. Manually rotate the pendulum to different angles and examine the pendulum energy shown in the Pendulum Angle (deg) and Pendulum Energy (mJ) scopes.
1. Record the energy when the pendulum is being balanced upright.
1. Stop the controller to return the pendulum to the downward gantry position.

Hybrid Swing-Up Control

1. Set the swing-up control parameters of the model to the following values:
· Er (mJ) = 10
· mu (m/s2/J) = 50
· u_max (m/s2) = 6
1. Once again, select QUARC | Start to run the controller.
1. If the pendulum is not moving, gently perturb the pendulum with your hand from the downward position.
1. Vary the reference energy, Er, between 10.0 mJ and 20.0 mJ. As it is changed, examine the pendulum angle and energy response in the Pendulum Angle (deg) and the Pendulum Energy (mJ) scopes and the control signal in the Motor Voltage scope.
1. Fix the value of Er at 20.0 mJ and vary the swing-up control gain mu between 20 and 60 m/s2/J. Observe any changes in the performance of the energy controller.
1. Stop the model.
1. Set the swing-up control parameters to the following values:
· mu (m/s2/J) = 20
· u_max (m/s2) = 6
1. Based on your observations from the previous section, enter an appropriate value for the reference energy parameter, Er.
1. Make sure that the pendulum is hanging down motionless and the encoder cable is not interfering with the pendulum.
1. Once again, select QUARC | Start to run the controller.
1. The pendulum should begin going back and forth. If not, perturb the pendulum lightly with your hand. Stop the controller if the pendulum appears to be unstable.
1. Gradually, in increments of 5 m/s2/J, increase the swing-up gain mu until the pendulum swings up to the vertical position. Capture the response of the pendulum, pendulum energy, and motor voltage. Be sure to record the swing-up gain that was required.
1. Stop the model.

[bookmark: _Toc522262942][bookmark: _Toc10546903]5.3 Analyze

5-1 What do you notice about the energy of the pendulum when it is moved to various angles? Does the measured energy when the pendulum is balanced upright make sense according to the equations in Section 3.1?

5-2 Attach the responses specified in Step 12 showing how changing the reference energy affects the system.

5-3 Describe how the changing the swing-up control gain in Step 13 affected the performance of the energy controller.

5-4 What did you set the reference energy to in Step 6?

5-5 Attach your responses from Step 20. What gain was required?

[bookmark: _Toc510092711][bookmark: _Toc522262943][bookmark: _Toc10546904]Lab 5: Stability Analysis

[image: Antares-launch1]
Figure 0-1: Control engineers use different techniques to analyze the stability of dynamic systems

Control engineers use both time-domain and frequency-domain techniques for analyzing the stability of dynamic systems. Time-domain techniques include Bounded-Input Bounded-Output (BIBO) stability analysis and the Routh-Hurwitz stability criterion. BIBO stability assesses the stability of a dynamic system using bounded inputs. Routh-Hurwitz stability analysis is suited for higher-order systems, where it is not always feasible to find the exact locations of all system poles to determine the overall stability of the system. Instead, using this technique, a classification of how many poles are in each portion of the s-plane is sufficient. On the other hand, Nyquist stability analysis is a frequency-domain technique. It allows you to assess the stability of the closed-loop system from the location of the open-loop poles and zeros. Thus, it does not require analysis on the closed-loop system itself. The Nyquist diagram can be used to assess the stability margins of a system to assess its “robustness”.

[bookmark: _Toc522262944][bookmark: _Toc10546905]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Determine BIBO stability of a first- and second-order system

2. Use Nyquist plots to examine the stability of a third-order system

3. Examine stability using the Routh-Hurwitz criterion

4. Experimentally validate stability of a closed loop system

[bookmark: _Toc522262945][bookmark: _Toc10546906]Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc522262946][bookmark: _Toc10546907]Expected Deliverables

In this lab, you will collect the following deliverables:

· System response to a step and impulse input
· Routh table representing the closed-loop transfer function
· Nyquist plot of the forward loop transfer function
· Theoretical gain and phase margins and their associated frequencies
· Experimental gain and phase margins and their associated frequencies
· Proportional gains resulting in stable, marginally stable, and unstable system

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.

[bookmark: _Toc522262947][bookmark: _Toc10546908]Section 1: BIBO Stability Analysis

[bookmark: _Toc522262948][bookmark: _Toc10546909]1.1 Theory and Background

Servo Model

The voltage-to-speed transfer function of the Controls board is given as follows:
Equation 1-1

where K = 22.6 rad/s/V is the model steady-state gain,  = 0.12 s is the model time constant,] is the load disk speed, and is the applied motor voltage. If desired, you can conduct an experiment to find more precise model parameters, K and , for your particular Controls board.

The voltage-to-position process transfer function the same as Equation 1-1 with an integrator in series:

Equation 1-2

where is the load disk position.

Stability

Definition for Bounded-Input Bounded-Output (BIBO) stability is:

1. A system is stable if every bounded input yields a bounded output.
2. A system is unstable if any bounded input yields an unbounded output

The stability of a system can be determined from its poles:

· Stable systems have poles only in the left-hand plane.
· Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on the imaginary axis.
· Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.
[bookmark: _Toc522262949][bookmark: _Toc10546910]1.2 Implement

Step Input

1. Open Lab5_1_BIBO_Stability_Analysis.slx model.
2. For the model to apply a step input, set the gain block to 0.
3. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
4. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
5. The model will apply a step input of 1 V to the DC motor. Position and speed responses will be displayed similar to Figure 1-1.
6. Observe the behavior of the system and take a screenshot of your results.

[image:] [image:]
Figure 1-1: Response to a step input
Impulse Input

7. For the model to apply an impulse input, set the gain block to 1.
8. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
9. The model will run for 3 seconds, applying a short of impulse of 1 V to the DC motor. Position and speed responses will be displayed similar to Figure 1-2.
10. Observe the behavior of the system and take a screenshot of your results
[image:] [image:]
Figure 1-2: Response to an impulse input
[bookmark: _Toc522262950][bookmark: _Toc10546911]1.3 Analyze

1-1 Determine the stability of the voltage-to-speed servo system by determining the poles of Equation 1-1.

1-2 Based on the speed response to the step input and the BIBO stability principle, determine the stability of the system. How does this compare with your results from the pole analysis?

1-3 Determine the stability of the voltage-to-position servo system by determining the poles of Equation 1-2.

1-4 Based on the position response to the step input and the BIBO stability principle, determine the stability of the system. How does this compare with your results from the pole analysis?

1-5 Based on the position response to the impulse, did using an impulse lead to BIBO stability in the system? Explain your findings.

[bookmark: _Toc522262951][bookmark: _Toc10546912]Section 2: Nyquist Stability Analysis

[bookmark: _Toc522262952][bookmark: _Toc10546913]2.1 Theory and Background

The gain and phase margins of a system can be used to assess the stability of a closed-loop system. The gain margin indicates how much open-loop gain is required before the system goes unstable. The phase margin indicates how much phase shift is needed in order to make the system go unstable. These are key indicators used to assess the stability of a system. The Nyquist plot can be used to find these stability margins.

The block diagram of the closed-loop system with a generic compensator C(s) and the open-loop plant transfer function P(s) is shown in Figure 2-1. This will be used to control the angular rate of the Quanser Controls Board.
[image:]
Figure 2-1: Closed-loop system to control DC motor speed
The forward loop transfer function is defined as:

Equation 2-1

Recall the first-order voltage to speed DC motor transfer function:

Equation 2-2

Where K is the steady-state gain, the model time constant, and is the speed of the motor (i.e. the load disc), and is the applied motor voltage. Figure 2-2 represents the Nyquist plot of the loop transfer function and how it can be used to assess the gain and phase margins.
[image:]
Figure 2-2: Nyquist plot with stability margins
The gain margin (gm) is formally defined as the increase in the system gain when the phase is 180 that will result in a marginally stable system. The gain margin frequency (ωgm) is the frequency where the imaginary part of the loop transfer function L(s) equals zero, i.e. where the system phase angle equals -180. The gain margin equals one divided by the magnitude of the loop transfer function L(s) at the gain margin frequency:

Equation 2-3

The phase margin (φm) is formally defined as the angle through which the locus the loop transfer function L(s) must be rotated so that the unity magnitude point is (-1, 0), i.e. the system is marginally stable. The phase margin frequency (ωpm), which is also referred to as the gain crossover frequency, is the frequency where the magnitude of the loop transfer function equals one, i.e. . At the phase margin frequency, the phase margin is defined as the distance of the system phase angle above -180°.

The delay margin (Tdm) is another stability concept which is defined as the amount of time delay that brings the system to the stability boundary. For a simple system where the Nyquist plot is as shown in Figure 2-2, the delay margin is given by:

Equation 2-4

where φm is the phase margin and the ωpm is the phase margin frequency.

The actual closed-loop implementation that is used to assess the stability margins of the Quanser Control Board is shown in Figure 2-3.
[image:]
Figure 2-3: Closed-loop implementation used to find stability margins experimentally
The Loop Gain parameter is a pure gain and is used to estimate the system gain margin. The nDelay parameter is an integer number of sample periods and is used to determine the extra time delay needed to make the system unstable, where z-1 is the discrete time operator. A disturbance torque can also be simulated by applying an additional voltage, Vsd, to the motor input (through the software).

In this lab, a PI controller will be used to control the speed:

Equation 2-5

In addition to the plant transfer function, the forward loop transfer function will also include the low-pass filter that is used to filter out the angular velocity noise as well as the time delay introduced by the control loop rate. Thus the loop transfer function being used is the following:

Equation 2-6

where h is the control loop rate of the controller (e.g. control frequency of 100 Hz would be h = 0.01 s). By including the effect of filtering and sampling delay in the forward loop transfer function, we can improve the accuracy of the stability analysis.

[bookmark: _Toc522262953][bookmark: _Toc10546914]2.2 Implement

Simulation

In this section you will generate a Nyquist plot of the forward loop transfer function L(s), and theoretically determine various stability parameters such as gain margin, phase margin, delay margin, and their associated frequencies.

1. Determine the forward loop transfer function L(s) using Equation 2-6. Assume kp = 0.1, ki = 1, K = 22.6,  = 0.12, and h = 0.01. A Use the steady-state gain K = 22.6 V/rad and the time constant  = 0.12 s (or those obtained from one of the modeling labs performed).
2. Open the script Nyquist_Plot.m.
3. In the script, set variables kp = 0.1, ki = 1, K = 22.6, tau = 0.12, and h = 0.01.
4. Run the script and verify the output transfer function matches Equation 2-6.
5. Upon execution, the script will generate a Nyquist plot of the forward loop transfer function L(s) similar to Figure 2-4.
6. In the Nyquist plot use the Data Cursor tool and referring to Figure 2-2, estimate the theoretical gain margin (gm) and phase margin (φm) solely based on the plot. Compare your findings with the values output by the script.

[image:]
Figure 2-4 Sample Nyquist plot of L(s)
Experimental Validation

In this section you will implement the controller shown in Figure 2-3 to experientially determine the gain and phase margins of the system.

7. Open the model Lab5_2_Nyquist_Stability_analysis.xls.
8. Set the following parameters in the front panel of the VI:
a. Set point (rad/s): 35
b. kp: 0.1
c. ki: 1
d. Loop gain: 1
e. nDelay: 0
9. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
10. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
11. The model implements the controller shown in Figure 2-3 with a PI compensator to control the speed of the load disc. As the disc is rotating, use the Disturbance Switch to apply a disturbance to the system. Sample response is shown in Figure 2-5 showing applied disturbances at t ≈ 2.5 s and t ≈ 4.5 s. Take screenshots of your results.
[image:]
Figure 2-5: Controls board response with loop gain of 1 and nDelay of 0
12. Gain margin (gm) is the extra pure gain that is necessary to make the system marginally stable. To experimentally determine the gain margin, slowly increment the Loop Gain and at each increment apply a disturbance to the system using the manual switch. Ensure nDelay remains 0. As the loop gain increases, applying a disturbance to the system will cause the output speed to oscillate with a larger amplitude but eventually decays to the set-point (see Figure 2-6). Increase the loop gain value until it causes the system to become marginally stable (i.e. output exhibits oscillation with a constant amplitude) when subjected to a disturbance (see Figure 2-7). Make a note of this value and take screenshots of your results.

[image:]
Figure 2-6: Decaying oscillation when the system subjected to a
disturbance (kp = 0.1, ki = 1, nDelay = 0, Loop gain = 3.5)
[image:]
Figure 2-7: Persistent oscillation when system is at the verge of instability
13. Gain margin frequency (ωgm) is the frequency at which the system oscillates when it becomes marginally stable. Using the Cursor Measurement, estimate the gain margin frequency in rad/s from the Speed (rad/s) scope. Make a note of this value and take screenshots of your results.
14. As expressed in Equation 2-4, delay margin (Tdm) is a measure of the phase margin (φm). nDelay represents the extra sample time delay (equivalent to an extra phase lag) required to make the system marginally stable. The relationship between time delay and nDelay is as follows:

Equation 2-7

To determine the phase margin of the system, increase the nDelay numeric control starting from 0 in steps of 1. Ensure that Loop Gain is set to 1. At every iteration, apply a disturbance using the Disturbance switch. Once the output speed oscillations do not decay, or the speed becomes unstable, you have reached the phase margin at which the system has become marginally stable. At this point, record the corresponding nDelay. The corresponding frequency of the oscillations is the phase margin frequency (ωpm). Estimate the frequency using the Cursor Measurement tool. Take screenshots of your results.
15. Stop the model, if no further experiments are required.

[bookmark: _Toc522262954][bookmark: _Toc10546915]2.3 Analyze

3
4
2-1 What forward loop transfer function did you obtained in Step 1?

2-2 Attach a screenshot of the Nyquist plot of L(s).

2-3 What theoretical values did the script calculate for gain margin, gain margin frequency, phase margin, phase margin frequency, delay margin, delay margin frequency, and nDlelay?

2-4 What gain and phase margins did you estimate directly from the Nyquist plot? Compare these values with those directly calculated by the script. Show sample calculations.

2-5 What experimental values did you obtain for gain margin and gain margin frequency? Attach screenshots of your results.

2-6 What experimental values did you obtain for nDelay and phase margin frequency? Assuming a loop rate of 100 Hz (0.01 s), determine the experimental value of delay margin and phase margin using Equations 2-4 and 2-7.

[bookmark: _Toc522262955][bookmark: _Toc10546916]Section 3: Routh-Hurwitz Stability Analysis

[bookmark: _Toc522262956][bookmark: _Toc10546917]3.1 Theory and Background

Routh-Hurwitz Stability Criterion

The Routh-Hurwitz Criterion is a two-step process to determine the system's stability without having to obtain exact pole locations. In the first step, a Routh table is created, which is then interpreted in the second step to find out how many poles are in the left half plane, on the imaginary axis, or in the right half plane. The major benefit of the Routh-Hurwitz Criterion is its inherent capability to determine the range for which unknown system parameters result in a stable closed-loop system response.

[image:]
Figure 3-1: Unity feedback loop with compensator C(s) and plant transfer function P(s)

The closed-loop transfer function for a generic feedback loop as shown in Figure 3-1 is given as:

Equation 3-1

To determine the stability of Equation 3-1, we are only interested in the pole locations of the closed-loop system, i.e. the roots of the closed-loop denominator, where D(s) has the form:

Equation 3-2

If and only if all poles are strictly in the left half plane, the system is stable. For example, a fourth-order polynomial has the following form:

Equation 3-3

To create a Routh table, we add a row for each coefficient of D(s) and add, starting from the highest coefficient, every other coefficient in decreasing order in the first line. Next, repeat the procedure for the second line, starting with the second highest coefficient and add every other coefficient in decreasing order similar to the first line. For Equation 3-3, the Routh table looks like:

	s4
	a4
	a2
	a0

	s3
	a3
	a1
	0

	s2
	
	
	

	s1
	
	
	

	s0
	
	
	

Table 3-1: Routh table for a fourth-order polynomial
The remaining entries are obtained as follows. Each entry is a negative determinant of a 2 by 2 matrix divided by the value in the first column one row above. The entries in the first column of the determinant are the two values of the rows above. The entries in the second column of the determinant are the values in the two rows above in the column to the right of the current entry, refer to Equation 3-3.

	s4
	a4
	a2
	a0

	s3
	a3
	a1
	0

	s2
	
	
	

	
s1
	
	
	

	
s0
	
	
	

Table 3-2: Calculating the remaining entries in the Routh table
Once the Routh table is found, the number of sign changes in the first column is equal to the number of right half plane (unstable) system poles.

If a whole row in the Routh table is zero, the denominator polynomial has a factor that is an even polynomial. To complete the Routh table for this instance, move up one row, write out the corresponding polynomial of that row using the entries of the row as the coefficients. Then differentiate this polynomial and use the coefficients of the differentiated polynomial instead of the zeroes previously obtained. For example, consider the polynomial:

Equation 3-4

The corresponding Routh table is:

	s5
	1
	5
	2

	s4
	7
	35
	14

	s3
	0
	0
	0

	s2
	
	
	

	s1
	
	
	

	s0
	
	
	

The s3 row has all zero coefficients, thus the polynomial with coefficients one row above is:

Equation 3-5

Differentiating p(s) yields:

Equation 3-6

Using these coefficients instead of the zero row above yields the (completed) Routh table:
	s5
	1
	5
	2

	s4
	7
	35
	14

	s3
	28
	70
	0

	s2
	17.5
	14
	0

	s1
	47.6
	0
	0

	s0
	14
	0
	0

Every even polynomial only has roots that are symmetrical about the origin. Since there is no sign change in the first column of the Routh table, there are no positive roots. Therefore, the only possible symmetry is for the roots to be purely imaginary, thus the overall system is marginally stable.

It may also happen that there is only a leading zero in the Routh table and the remaining entries in that row are non-zero. In that case, replace the leading zero with ϵ and carry on deriving the remainder of the Routh Table as a function of ϵ. Once the entire table is obtained, determine the sign changes and stability with ϵ > 0 and the limit when ϵ →∞.

In this lab, you'll investigate the phenomenon of marginal stability using the Routh-Hurwitz criterion by implementing the closed-loop controller shown in Figure 3-2. The controller consists of a unity feedback loop with a simple compensator as well as a proportional gain. The controller can be represented using a third-order transfer function.
[image:]
Figure 3-2: Unity feedback loop with compensator and proportional gain on Controls Board
Based on Figure 3-1, we have the compensator:

Equation 3-7

where kp is the proportional control gain, and the plant transfer function representing the voltage-to-position dynamics of the DC motor is:

Equation 3-8

Note that there is also a proportional gain in the forward path of the feedback loop.

[bookmark: _Toc522262957][bookmark: _Toc10546918]3.2 Implement

Step Input

1. Given the feedback loop diagram in Figure 3-2, derive the closed-loop transfer function from R(s) to Y(s) in terms of the gain kp. Use the steady-state gain K = 22.6 V/rad and the time constant  = 0.12 s (or those obtained from one of the modeling labs performed).
2. Create a Routh table for the closed-loop transfer function and record your results in Table 3-3.
	s3
	
	

	s2
	
	

	s1
	
	

	s0
	
	

Table 3-3: Calculated Routh table for the closed-loop transfer function
3. Calculate the range of values of kp for which the system is stable.
4. Determine the kp for which the system is marginally stable.
5. Open the model Lab5_3_Ruth_Hurwitz_Stability.slx .The model implements a closed loop position controller, specifically the unity feedback loop with the compensator and proportional gain depicted in Figure 3-2.
6. Ensure the ELVIS III is connected to the USB port on your computer, and both the ELVIS III and the application board are powered.
7. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
8. Set the Set point (rad) to 0.
9. Set the kp gain to 1.
10. With one finger, manually perturb (move) the load disk and observe the response and stability of the system. Approximate any steady-state error that you may observe. Take a screen shot of your results.
11. Increase kp to 5, perturb the load disk and observe the response and stability of the system. Approximate any steady-state error that you may observe. Take a screen shot of your results.
12. Further increase the proportional gain until you reach the value for kp for which the system is theoretically only marginally stable. Manually perturb the system and observe its response and stability. Approximate any steady-state error that you may observe. Take a screen shot of your results.
13. Set kp to a value which will cause the system to theoretically become unstable. Manually perturb the system and observe its response and stability. Approximate any steady-state error that you may observe. Take a screen shot of your results.
14. Once finished click Stop to stop the model.
[bookmark: _Toc522262958][bookmark: _Toc10546919]3.3 Analyze

3-1 What closed-loop transfer function from R(s) to Y(s) did you derive? Show your calculations.

3-2 Present the Routh table you recorded in Table 3-3.

3-3 What is the range of kp that results in a stable system?

3-4 What is the kp for which the system is marginally stable? Comment on the pole locations of the closed-loop transfer function.

3-5 Describe the behavior and stability of the system when perturbed while using kp = 1.

3-6 Describe the behavior and stability of the system when perturbed while using kp = 5.

3-7 Describe the behavior and stability of the system when using the theoretical kp that should result in a marginally stable system. Did the system behave as expected?

3-8 Describe the behavior and stability of the system when using the theoretical kp that should result in an unstable system. Did the system behave as expected?

3-10 How did different proportional gain values affect steady-state error?

[bookmark: _Toc10546920]Lab 6: Digital Control

[image: pexels-photo-825262]
Figure 0-1: Most controllers are implemented using digital devices

All of the controllers designed in the previous labs where implemented using continuous transfer functions. Strictly speaking, this means that the controllers would be implemented using only analog electronics (e.g. resistors, capacitors and inductors). In most cases, however, it is not feasible to implement a controller using only analog electronics. Analog electronics are inherently prone to variations in their nominal values, and thus extensive fine-tuning is necessary for each implemented controller using the same nominal electronics. Furthermore, each pure analog circuit will be very susceptible to environmental changes, in particular changes in temperature and humidity. Therefore, most control systems are now being implemented on digital computers, i.e. usually using either a PC/laptop or a microprocessor. In this lab, the impact of implementing a continuous controller in a digital environment will be investigated.

[bookmark: _Toc10546921]Learning Objectives

After completing this lab, you should be able to complete the following activities.

1. Model a digital computer using an ideal sampler and zero-order hold

2. Understand the effect of discretization a controller

3. Assess stability of discrete system from pole locations in z-domain

4. Use root-locus to design a proportional controller for a discrete system

5. Design a discrete lead compensator using root-locus

5.

[bookmark: _Toc10546922]Required Tools and Technology

	Platform: NI ELVIS III
	· View the NI ELVIS III User Manual
http://www.ni.com/en-us/support/model.ni-elvis-iii.html

	Hardware: Quanser Controls Board
	· View the Controls Board User Manual
http://www.ni.com/en-us/support/model.quanser-controls-board-for-ni-elvis-iii.html

	Software: MATLAB
Version R2018a or Later
Toolkits and Modules:
· Simulink®
· Simulink Coder™
· MATLAB Coder™
· Control System Toolbox™
· QUARC 2018 for NI ELVIS III
	· Before downloading and installing software, refer to your professor or lab manager for information on your lab’s software licenses and infrastructure
· Download QUARC for NI ELVIS III
https://www.quanser.com/download-quarc-ni-elvis3-controls-board/
· Refer to Quick Installation Guide: QUARC on NI ELVIS III for detailed installation instructions
https://www.quanser.com/wp-content/uploads/2018/06/QUARC_Quick_Installation_Guide_for_NI_ELVIS_III.pdf

[bookmark: _Toc10546923]Expected Deliverables

In this lab, you will collect the following deliverables:

· Discretized open-loop system response using different sampling times
· Discretized closed-loop system response using a proportional-only controller using different sampling times
· Analysis of the stability of a discretized closed-loop system using a proportional-only controller
· Discretized lead compensator designed to meet specifications

Your instructor may expect you complete a lab report. Refer to your instructor for specific requirements or templates.

[bookmark: _Toc10546924]Section 1: Introduction to Digital Control

[bookmark: _Toc10546925]1.1 Theory and Background

Servo Model

Recall that the voltage-to-position transfer function of the Controls Board is as follows:
Equation 1-1

where K = 22.6 rad/s/V is the model steady-state gain,  = 0.12 s is the model time constant, is the load disk position, and is the applied motor voltage. If desired, you can conduct an experiment to find more precise model parameters, K and , for your particular Controls board.

A digital computing platform (such as the NI ELVIS III) can be modeled using an ideal sampler and zero-order hold (ZOH) function, as depicted in Figure 1-1. This will be used to investigate the behavior of a continuous controller, such as a PD position controller for the Controls Board, when implemented on a digital system.

[image:]
Figure 1-1: Sampling modeled using Zero-Order Hold
The ideal sampler of the error signal is:

Equation 1-2

where T is the sampling interval and is the is the impulse function. The Laplace Transform of the zero-order hold is:

Equation 1-3

Based on the continuous time controller developed, this experiment will investigate how different sampling times affect the control performance. To measure the controller performance, the percent overshoot and settling time of the response will be analyzed.
Figure 1-2 shows a typical second-order system response, y(t), to a reference input signal, r(t).
[image: ee2]
Figure 1-2: Measuring percent overshoot (PO) and settling time (ts) of a second-order response
The 2% settling time, ts, of the system is the time it takes to settle to 2% of its final value. From Figure 1-2, this is the time between the initial step time, t0, until the system response has entered and remains within an error margin of 2% of the reference step magnitude R0, tset:

Equation 1-4

The percent overshoot can be measured from a step response similar to Figure 1-2 using:

Equation 1-5

where ymax is the maximum peak of the response and R0.

[bookmark: _Toc10546926]1.2 Implement

Rate Transitions in MATLAB®

In order to investigate how a digitized controller works on a near-continuous plant, we need to know how to set up our Simulink® model such that parts of the model run at different speeds. This can be done using the Zero-Order Hold and Rate Transition blocks.

1. Open the model Lab6_1_Rate_Transition.slx shown in Figure 1-2.
2. The model is set to run at a rate of 500 Hz (0.002 s) for 5 seconds.
3. Double-click the Zero-Order Hold block and set Sample time to 0.1.
4. Double-click the Rate Transition block, and uncheck all the boxes and set the output port sampling time to -1.
5. Use the MATLAB® Help function to understand the functionality of both blocks.
6. Run the model.
7. Your response should look similar to Figure 1-3. Take a moment to observe the response of the original and delayed signals. Take a screenshot of your results.
8. Vary the Sample time parameter of the Zero-Order Hold block. Re-run your model and observe the corresponding response. Take a screenshot of your results.
[image:]
Figure 1-2: Zero-Order Hold and Rate Transition blocks in Simulink®
[image:]
Figure 1-3: Original and delayed signal using the Zero-Order Hold function
Discretization of the Controls Board controller

In this section, you will implement a continuous PD position controller in a discrete time environment. The Simulink model is configured to run with at a sampling interval of 0.002 s, i.e. 500 Hz. The Zero-Order Hold blocks will be used to discretize the error signal of the PD controller. The model includes a manual switch allowing you to examine the difference between the continuous and discrete versions.
9. Using the MATLAB® Command Window, manually set variable Ts = 1/500 in the MATLAB® workspace.
10. Open the model Lab6_1_PD_ZOH.slx.
11. The model implements a PD position controller. The Zero-Order Hold block holds the error signal for the sample period Ts. You can use the Bypass Switch to bypass the Zero-Order Hold.
12. In the model, ensure proportional gain Kp = 5 and derivative gain Kd = 0.2.
13. Make sure the ELVIS III and the Controls Board are powered.
14. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
15. A square signal with a frequency of 0.4 Hz is applied to DC motor, swinging the load disk back and forth. Position and voltage responses will be displayed similar to Figure 1-4.
16. Use the Bypass Switch to observe the effect of bypassing the Zero-Order Hold block. Determine PO and tset.
17. Stop the controller.
18. Using the MATLAB® Command Window, manually set variable Ts = 1/50 in the MATLAB® workspace.
19. Re-build the run the model.
20. Use the Bypass Switch to observe the effect of bypassing the Zero-Order Hold block. Your responses should look similar to Figure 1-5. Determine PO and tset.
21. Stop the controller.
22. Change the sampling rate of the Zero-Order Hold block to 0.1 s. Is it still possible to control the load disk with a discrete error signal?
[image:] [image:]
Figure 1-4: Voltage and position responses without holding the error signal

[image:] [image:]
 Figure 1-5: Voltage and position responses when holding the error signal using the
Zero-Order Hold block (Ts = 0.02)

[bookmark: _Toc10546927]1.3 Analyze

1-1 What happened when you changed the sample time parameter in the in Zero-Order Hold block in the Simulation?

1-2 Why is the Rate Transition block needed?

1-3 How did the discrete and continuous PD control response compare when using a Zero-Order Hold with a sampling time of 0.002 s? What was the measure percent overshoot and settling time of the discretized controller running at 0.002 s.

1-4 Did you observe a difference between the continuous and discrete controller running at 0.02 s? What was the measure percent overshoot and settling time of the discretized controller running at 0.02 s.

1-5 Was it still possible to control the load disk with a discrete error signal running at 0.1 s?

[bookmark: _Toc10546928]Section 2: Discrete Stability

[bookmark: _Toc10546929]2.1 Theory and Background

For continuous time system design, the analysis of the system and controller design is often carried out in the frequency domain. To do this, a Laplace transform is used to map the time-domain signal to the complex s-domain. The Laplace Transform for continuous time function f(t) is:

Equation 2-1

Recall that the stability of the system can be determined from its transfer function. A system is stable if all closed-loop poles are in the left half plane of the complex s-plane.
For discrete time systems, a similar approach is used. The Z transform of the sampled time signal f(nT) (sampling the continuous signal f(t) is:

Equation 2-2

where T is the sample time of the discrete system and n = 0,1,2 ... is the signal sample. The stability of a discrete control system depends on the locations of its closed-loop system poles on the z-plane, as shown in Figure 2-1. A discrete system is:

1. Stable if all the poles are inside the unit circle.
2. Unstable if any pole lies outside the unit circle and/or there are more than one pole on the unit circle.
3. Marginally stable if one pole lies on the unit circle and all other poles are inside the unit circle.
[image:]
Figure 2-1: Stability on z-plane
The unity feedback block diagram with the sample and zero-order hold that model the digital computer is shown in Figure 2-2.

[image:]
Figure 2-2: Closed-loop system with compensator implemented on digital computer

Recall the Quanser Controls Board DC motor voltage-to-position transfer function:

Equation 2-3

where K is the motor steady-state gain, is the motor time constant, is the Laplace Transform of the motor or inertial disk position, and is the Laplace Transform of the applied motor voltage. With the sample and hold, this becomes:

Equation 2-4

The additional integrator in the s-domain expression is based on the step input from the zero-order hold during each sampling period. In the discrete domain, a single step with a unit duration is equivalent to a step of infinite duration combined with the same step of opposite sign one time step delayed, i.e. . Thus taking the z-transform of Gp(s) gives:

Equation 2-5

The closed-loop transfer function between the reference input, r, and the system output, y, in the block diagram in Figure 2-2 is:

Equation 2-6

and the corresponding closed-loop error signal is:

Equation 2-7

[bookmark: _Toc520797321]

[bookmark: _Toc10546930]2.2 Implement

Stability Modeling

In this section you will use MATLAB to model the effect of sample time and controller gain on the stability of a discretized position controller.

1. Open Lab6_2_Discrete_Stability_Modeling.m. You will use this MATLAB® script to define the discrete open-loop transfer function Gp(z) in the Workspace.
2. In the script, set sampling time Ts to 0.002. Ensure the gain and time constant of the system are set to K = 22.6 and tau = 0.12 respectively, or set them to the system parameters that you determined in the modeling lab.
3. Run the script.
4. The script calculates variable Gz which represents the discrete open-loop transfer function Gp(z).
[image:]
Figure 2-3: Control System Designer™ used to assess stability of discrete system
5. Use the Control System Designer™ app in MATLAB® (Figure 2-3) to plot the open-loop and close-loop poles of the system, plot the system step response, and assess how proportional gain affects the stability of the closed-loop system. To do this, in the Command Window enter sisotool(Gz). The default view shows the root-locus and bode plots of loop transfer function: , along with the step response of the closed-loop system with Gc(z) = 1. Note that the plots are for a sampling interval of 0.002 s.
6. In the Root-Locus Editor plot, the blue x and o and the red x and o are the plant and controller’s pole and zero locations respectively; the filled pink squares and circles are the closed-loop pole and zero locations, respectively.
7. If required, the location of the closed-loop poles can be moved directly in the Root-Locus Editor plot to the desired position by changing the controller gain . To change the gain, in the Data Browser under Controllers and Fixed Blocks, double-click variable C and change its value (default value is 1). When you enter a new value, the step response and Bode plots will update automatically. Are the closed-loop poles located inside the unit circle indicating a stable system (if necessary, use the Zoom in tool found under the ROOT LOCUS EDITOR tab)? If not, approximate the maximum value of C which causes the system to go unstable. Take a screenshot of your results.
8. Close the Control System Designer™ app. Repeat the previous steps to examine the effect of sampling interval Ts on the closed-loop controller. Start by setting variable Ts to 0.02. Re-run the script. Once again, type sisotool(Gz)in the Command Window and observe the step response of the closed-loop system with Gc(z) = 1. Are the closed-loop poles located inside the unit circle indicating a stable system (if necessary, use the Zoom in tool found under the ROOT LOCUS EDITOR tab)? Determine the value of C which causes the system to go unstable. Take a screenshot of your results.
9. Repeat the previous investigation using Ts = 0.2. Document your results.

Validate

10. Open Lab6_2_Discrete_Stability.slx. Simulink model shown in Figure 2-4. The model implements the unity feedback control shown in Figure 2-1. The compensator is set to a proportional gain using a Slider Gain block.
11. Set the Slider Gain block to 1 to set the proportional gain of the compensator to 1.0 V/rad.
12. The sampling interval of the Zero-Order Hold block in the Simulink model are set using parameter Ts. In the MATLAB® Command Window, enter Ts = 0.02.
13. Make sure the ELVIS III and the Controls Board are powered.
14. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
15. The response should look similarly as shown in Figure 2-4.

[image:] [image:]
Figure 2-4: Typical response of proportional-only control running at 50 Hz (0.02 s)
16. While the controller is running, change the value of the proportional gain using the Slider Gain to examine its effect on the stability of the system.
17. Stop the controller.
[bookmark: _Toc520797324][bookmark: _Toc10546931]2.3 Analyze

2-1 Analytically find the z-transform of open-loop system with the sample and hold,).

2-2 Analytically assess the stability of the open-loop system by looking at the poles in the z-plane. Is the stability affected by the sampling interval, T? If so, explain.

2-3 Present and analyze the simulated results that you obtained using the Control System Designer™ app for a sampling interval of 0.002 s. What value of proportional gain C caused the system to go unstable?

2-4 Present and analyze the simulated results that you obtained using the Control System Designer™ app for a sampling interval of 0.02 s. What value of proportional gain C caused the system to go unstable?

2-5 Present and analyze the simulated results that you obtained using the Control System Designer™ app for a sampling interval of 0.2 s. What value of proportional gain C caused the system to go unstable?

2-6 Based on your obtained results, using a proportional gain Gc(z) = 1, what effect did sampling time have on the shape of the closed-loop step response?

2-7 When running the proportional controller on the Quanser Controls Board at 50 Hz (Ts = 0.02), what effect did the proportional gain have on the stability of the system? Were your findings in-line with the analysis performed using the Control System Designer™ app?

[bookmark: _Toc10546932]Section 3: Discrete Lead Compensator Design

[bookmark: _Toc10546933]3.1 Theory and Background

To directly design a digital controller, we are interested in the transfer function between the input and the output of the system, two purely digital signals. The transformation techniques described in the previous labs used approximation techniques to find discrete equivalents of the continuous plant model, and consequently introduced an approximation error into the design. For direct digital design, however, everything that happens between samples of the input and the output depends only on the input at a particular sample time. Therefore, by the definition of zero-order hold, they exactly describe the system behavior, thus no additional error is introduced.

The discrete closed-loop unity feedback system is shown in Figure 3-1 with the discrete compensator, , and the discrete plant, .
[image:]
Figure 3-1: Closed-loop unity feedback of discrete system
The first step in the discrete control process is to obtain a discrete transfer function for our continuous plant using zero-order hold. Formally, for a continuous plant P(s) that is preceded by a zero-order hold, the discrete transfer function is given by:

Equation 3-1

where is the z-transform of the sampled time series of the s-domain transfer function P(s). The transfer function P(s) is the Laplace of the open-loop voltage to position system defined by:

Equation 3-2

where K is the motor steady-state gain, is the motor time constant, is the Laplace Transform of the motor or inertial disk position, and is the Laplace Transform of the applied motor voltage.

The additional integrator in the s-domain expression is based on the step input from the zero-order hold during each sampling period. In the discrete domain, a single step with a unit duration is equivalent to a step of infinite duration combined with the same step of opposite sign one time step delayed, i.e. .

This derivation also contains the biggest disadvantage of direct digital control design: to perform the z-transform in Equation 3-1, the sampling rate has to be known and fixed. Therefore, choosing a different sampling period requires a complete re-design. For the control design using another technique, such as the Zero-Pole-Matching or Bilinear (Tustin) methods, only the continuous-time controller had to be re-evaluated.
Once P(z) is obtained, the actual discrete controller design is similar to the controller design of continuous systems. Generally speaking, the design rules for continuous and discrete control are identical, with one important exception: the stability boundary for continuous systems is the imaginary axis; for discrete systems, it is the unit circle.
The discrete version of a lead compensator can be expressed by the difference equation:

Equation 3-3

where K is the proportional gain, z0 is the zero location, and p0 is the pole location. For a lead compensator, the zero is greater than the pole, thus . The pole must be placed inside the unit circle, .

Design a discrete lead compensator that meets the following requirements for the steady-state error (ess), settling time (ts) and percentage overshoot (PO):

Equation 3-4

[bookmark: _Toc10546934]3.2 Implement

Controller Design

1. Following the same method used in Section 2, use the Control System Designer™ app in MATLAB® to assess how proportional gain affects the system when it is sampled at 50 Hz. To do this, from the Command Window call sisotool(Gz), where Gz is the discretized transfer function at sampling interval of 0.02 s. This will open the Control System Designer™ app in MATLAB® as shown in Figure 3-2. The default view shows the root-locus and bode plots of loop transfer function: , along with the step response of the closed-loop system.
[image:]
Figure 3-2: Control System Designer™ used to assess stability of discrete system
2. For now, do not change the closed-loop pole/zero locations. Right click on the root-locus diagram and add a z-plane grid to the view.
3. Use the Design Requirements function in the app to limit the feasible closed-loop location area. To add controller design requirements, right-click on the Root-Locus Editor plot and select Design Requirements | New. Use this to add the percent overshoot and settling time requirements given in Equation 3-4. Describe the resulting feasible region and take a screenshot of the root-locus.
4. The compensator in the app is initially set to a proportional controller (with a gain of C = 1). Recall from Section 2 that the filled pink squares and circles are the closed-loop pole and zero locations, respectively, that can be modified by moving them on the Root-Locus Editor plot. Are you able to move some of the poles into the feasibility region?
5. Add a Lead compensator in the app. To do this, in the Controllers and Fixed Blocks window, right-click on compensator C and select Open Selection. In the Compensator Editor window, right-click on the Pole/Zero pane and select Add Pole/Zero | Lead. This will add a zero and a pole to your compensator and update your root-locus diagram and step-response plots. In the Root-Locus Editor plot, the blue and red x and o are the plant and controller pole and zero locations, respectively.
6. As a rule of thumb, for a closed-loop system with three closed-loop poles, you should try to vary the controller pole and zero locations such that the root-locus goes through the intersection of the feasible regions of your requirements, i.e. ensure that both requirements can be fulfilled at their maximal (or minimal) admissible value. Once the root-locus goes through these points, change the control gain by drag-and-dropping the closed-loop poles until a complex conjugate pair is close to the intersection points. Verify that the third closed-loop poles (on the real axis) is inside the unit circle. For best results, you should try to find a combination of controller pole and zero locations where all poles are approximately equidistant to the origin.
7. Go to the Root-Locus Editor plot and only move the controller pole (don't change the location of the zero or controller gain by moving the closed-loop poles around) to see the effect of different pole locations. Observe what happens when you move a closed-loop pole along the root-locus. Can you satisfy the design requirements? Take a screenshot of your results.
8. Move the pole and/or zero of the lead compensator and adjust the gain until the closed-loop poles are moved such that requirements are satisfied. Give the resulting lead compensator and take a screenshot of your results. To ensure your design has a large enough gain, make sure the step response has a maximum overshoot of 5% and the settling time is less than 0.3 s. T Make sure you use the compensator shown in the Preview window in the app.
Validate

The Simulink model shown in Figure 3-3 implements the unity feedback control shown in Figure 2-1 with a lead compensator. The proportional gain is set using the Gain block and pole/zero of the lead can be changed in the Discrete Transfer Fcn block.
[image:]
Figure 3-3: Implements a discrete lead feedback compensator
9. Open the model Lab6_3_Discrete_Lead_Compensator.slx.
10. Based on the finalized lead compensator you designed in the previous section, enter the gain and lead compensator z-transform in the Simulink model Gain and Discrete Transfer Fcn blocks.
11. The sampling interval of the Zero-Order Hold block in the Simulink model are set using parameter Ts. In the MATLAB® Command Window, enter Ts = 0.02.
12. Make sure the ELVIS III and the Controls Board are powered.
13. From the Simulink® menu bar select QUARC | Build. Once the QUARC real-time controller has been successfully built, select QUARC | Start to run the controller.
14. The sample response shown in Figure 3-4 is for the default lead compensator settings:

As such, the response using your designed lead compensator will be different.

[image:] [image:]
Figure 3-4: Closed-loop response using default lead compensator settings

15. Does your controller meet the desired requirements listed in Equation 3-4? Try tuning the gain to minimize the steady-state error and/or improve the settling time. Determine the percent overshoot, settling time, and steady-state error. Take a screen shot of your results.
16. Stop the controller.
[bookmark: _Toc10546935]3.3 Analyze

3-1 Describe the resulting feasible region based on the compensator requirements given in Equation 3-4. Attach a screen capture of the corresponding root-locus plot. Can the design requirements be satisfied using a proportional-only compensator? Explain.

3-2 What happened in the root-locus and step response plots when the pole of the lead compensator was moved along the real-axis? Can you satisfy the design requirements?

3-3 Present the finalized lead compensator that shows the root-locus and step response plots.

3-4 When implementing the designed lead controller on the Control Board, did your controller meet the desired requirements listed in Equation 3-4? If not, tune the controller to improve its performance. Provide one possible reason for the discrepancy. Attach the system responses and calculate the percent overshoot, settling time, and steady-state error.

[image:][image:]		
[image:]5

image77.png

image78.png
Simulation Help

Speed (radis)

image79.png
Simulation Help

image80.png
Simulation Help

12
10
&
0 05 1 15 2 25 3

image81.png

image82.png

image83.png

image3.png

image84.png
Imaginary Axis

Nyquist Diagram

1008

B

image85.png
s)

Speed (rad

image86.png
Simulation Help

=N =]

Speed (radis)

image87.png
nulation Help

2-al- & Fd

s)

Speed (rad

image88.png
€(@s)

P(s)

image89.png

image90.jpeg

image4.png

image91.png

image92.png
2F Ymax

PO

max

r-min

1.5}

M1 pue A

051
0

1.6

1.5

1.4

1.3

1.2

1.1

0.9

time (s)

image93.png
[ER
E=
Sera Zareorder =

Ganerator s Rate Transiion

image94.png
Simulation Help

23 |E-FE

image95.png
File Tools View Simulation Help

O| & -|=-|E-|F|@

image96.png
Simulation Help

Position (rad)

image97.png
@ VmW

Simulation Help

Rl

image98.png
4 Position (rad)

File Tools View Simulation Help

image99.png
Imaginary Axis

Real Axis

image100.png
4\ Control System Designer - Bode Editor for LoopTransfer_C.
Root Locus Editor for LoopTr *
v Controllers an... , _Root Locus Editor for LoopTransfer_C
F
c
G 1
I o
o 2 o
g g
+ Designs S E
g
=
5 4 3 2 4 o0 1
Stableloop Real Axie
[OTanster 2 siep
¥ Responses Step Response
LoopTransfer C A s From: r To:y
g
IOTransfer du... | || S
[(OTanster.dyzy o | |8 § 4
~ Preview & 3
£
<05
270
107! 10° 10! 102 10° N
Frequency (rad/s) o 05 1 15 2 25

image101.png
Simulation Help

image102.png
Simulation Help

M NE =]

image103.png
R(2)

E(z)

Ge(2)

U(z)

Gp(2)

Y(2)

image104.png
[oooa) z-.65

G g =P =8]
S sl o o, =
e =

Transter Fen

V)

[

Posiion)

image105.png

image106.png

image5.png

image6.png
RC

Quanser Real-time Control

image7.jpeg

image8.png

image9.png
Plant

Model

[am]

Speed (radis)

image10.jpeg
3 Lab1DCMotor_ Modeling/MODEL - Simulink third party support use [)

= I~ » o P — did
B-o-Bes ¢ B8-SO B 7] @ @~
=
@ |[Pa]Lab1DCMotor_Modeling b [ba] MODEL -
Q
=)
=
=]

o ©)
Vm speed
Voltage
to Current
-]
»

image11.png
Simulation Help

a-|C-|F

image12.png

image13.png
30

I
0.85
time

0.9

I
0.95

0.7 0.75

0.8

0.85
time

0.9

0.95

image14.png
Plant

[mm]

Speed (radis)

image15.png
File
@ -

Tools

Simulation Help

a-|C-|F

%]

vm

image16.png
File Tools Simulation

Help

RN NME]

@ -

speed (radls)

image17.jpeg
4] Enc#0 dc motor (Speed rad/s C=mran X

File Tools View Simulation Help

O ENCSI=RE

T ey uroments

image18.png
-5

1
25
time (s)

L

0.5

25
time (s)

35

45

image19.emf
3 dB

image20.png
2

e

[
znA|—'

Frasuency

Gieat

Plant

O

Spesd fracs)

image21.png
few Simulation Help

vm

image22.png
Simulation Help

speed (radls)

image23.png
Simulation Help

vm

image24.png

image25.jpeg
Figure 1

File Edit View

Inset Tools

Desktop Window Help.

EEFDIEEY Y PRI

28

27

05

1 15 2
Frequency (Hz)

25

image26.png

image27.jpeg

image28.png
Set-point Proportional
Weight Control Gain
©4(s)
by ko
Integral Control
Gain Integrator Plant
Vin(s) ©n(s)
ki > s »O > P(s)

image29.png
vm

image30.png
Simulation Help

image31.png
y(t) and r(t)

151

051

max

R

PO

0.9

13
time (s)

1.4

1.5

16

image32.png
Simulation Help

image33.png

image34.emf

image35.png
Megritude (d5)

Phase (deg)

Bode Diagram
Gm=Inf, Pm =-130 deg (st O racisec)

20 dbide

El

10 ' e T
Frecuency (radisec)

0

image36.png
Bode Diagram

Bode Diagram

Gm =Inf dB (at Inf rad/s) , Pm =33.7 deg (at 125 radls) Gm = Inf dB (at Inf radis), Pm = 33.7 deg (at 12.5 radls)

radis)

50 50
8 Plot A: P,(s) 8 Plot B: K *P(s)
8 o 8 o
g g
= 50 = 50
90 90
g g
‘g 135 ‘g 135
£ £
[[
180 - = 180 = =
10! 100 10! 102 10° 10! 100 10! 102 1
Frequency (rad/s) Frequency (rad/s)
Bode Diagram Bode Diagram
Gm=Inf, Pm =-180 deg (at 0 rad/s) Gm =Inf dB (at Inf rad/s) , Pm =40 deg (at 12.6
20 50
@ @ P wre—
S5l [Porcoe g]
8 8
ER Z s
8s g
= = 00
0
60 90
g g
e g 135
£ £
[[
0= . 180 - -
100 10° 100 102 104

Frequency (rad/s)

Frequency (rad/s)

image37.png
Simulation

Help

B-la-|E-F

image38.png
Simulation Help

image39.jpeg

image40.png

image41.png
kg

Vin(s)

image42.png
Reference Input

0s0

P controller

e

04

Frequancy

Q

B

K (Virad)

B

8 (Vi)

Posiion rad)

image43.png
ki

1/s

Y(s)

v

A 4

A 4

kq

image44.png
\ 4

A 4

ki

ky

1/s

U(s)

Y(s)

»

A

image45.png
y(t) and r(t)

16

14

12

0.8

0.6

0.4

0.2

time (s)

image46.png
Reference Input

PID controller

5
Ampiiude

02 b "1
Frequency

o a0
:
=0
Kvard
.{| N >|02

Kd (Viradls)

Position (rad)

image47.png

image48.png
Imaginary Axis (seconds'1)

Root Locus

30

N
o
T

-
o
T

0.636

o

N
o
T

)
S
T

32.6

-30
40

-25 -20 -15 -10 -5 0
Real Axis (seconds™)

image49.emf
G

c

(s)

P(s) C(s)

image50.png
Root Locus Root Locus Step Response
5 0 1
0.6
Plot A: P(s) 30| | Plot B: G (5)°Fi(s) 29 wmy’
—~ —~ 08
o w20
8 8 ose
5 5
8 8" g
80 2 o = £
< < 2
E = 069
E E 20
02
-30 289
08¢
-0 0
8 6 4 B 5 10 5 0 02 04 06 08
Real Axis (seconds™") Real Axis (seconds™") Time (seconds)

image51.png
b o o 3 o B R

Imaginary Axis (seconds™)

Root Locus

o]

Plot B: G (s)"P(s)

289

System: Gp

Gain: 4.46

Pole: 20 + 21
Darmping: 0.69
Overshoot (%): 5.01
Frequency (radis): 29

0.6

&

Real Axis (seconds™")

image52.png
Amplitude

Step Response

12

Plot C

>

04

02

0 005 01 015 02
Time (seconds)

025

03

035

image53.png
File Tools ulation Help

@ - Q-|@E-F@

image54.png

image55.png

image56.png
Xo

image1.png

image57.png
4 Pendulum (rad)

File Tools View

nulation Help

@ -

Angle (rad)

image58.png
Zo

image59.png
Refrence Input

g

mpitude

[

1

frequency

State-Space Model Pendulum (rad)

image60.png
4] Pendulum (rac)

image61.png
Simulation Help

image62.jpeg
e e Jo,

Py Ps oc=Cw |

image63.jpeg
State-Feedback
- Control

Inverted
Pendulum Plant

image64.png
%% Setting up State Space matricies
state_space_matrices;

*% Rank test

N = size(d):
n=N@):
T = corb(a,B
£ = rank(T):
X = ['Number of states ', num2str(n)
disp(X):
ifr=n

disp('system is controllable'):
else

disp('system is not controllable'):
end

%% Desired Parameters

%% Find companion matrices: (Ac, Bo)
% Characteristic equation: 574 + a_3%s"3 + a_ 2452 + a_l*s + a0
2 = poly(a);

image65.png
Motor Input

2

e

»{o2r

ey

‘Simulation With State Feedback

O

Motar Vatage
L
+1- 5V Amp Limit

systom states

e

(@on)

)

Pendulum Angie (dsg)

image66.png

image2.png

image67.png
Time

image68.png
Plant

image69.jpeg
by [{ @ (s

MNew Open Save

P H s &

T [R e e e

T o e & ' Advance e
= e o
1- ac
2 %e load parameters
3~ systen parameters;
4~ state space matrices;
- _ _ _
& %% This soript will be used to calculate the gain matrix based on the
7 % state space variables and the weighting matrices Q and R
e
s
10 %9=evers, o
1n- g=rsooo0:
1
1
1
1
16
17
1
19 K] = 1qr(A,5,Q,R) =
20
2 poles = eig(a) =

Ex o

Col 1

image70.png
Motor Input

(=}

prores

(deq)

01

Fraguancy
)

-

o

Enatle

Step Cmd

Plant With State Feedback

Conol

Ensila Barance
Control Swien

<=034007

Enaie Baance

MatorVatage

+1- 5V A Limit

Systom States

Rotary Ao (dog)

Ponduum Angl (deg)

image71.jpeg

image72.jpeg
Simulation Help

EERERE

image73.jpeg
Simulation Help

<& |2

s
&
z
z
s
&

image74.png

image75.jpeg
#3 Lab4 S hybrid_swingup_control - Simulink third party support use

e 5 View - Diplay~ Dlagrar Sruation Anabys = Cose~ Togls = QUARC = il
B-o-8 < HBe-E- Lo P w e) @ -
Lo b swingup_conrol
© [Falaot 5o _singip_conva » -
@ T e
a
=
- o= B
.) P
o gt - e
(ot ..E.. — -‘]

S ey CE = =

s i = =T
»
Ready % i

image76.jpeg

image107.png
QUANSER

INNOVATE - EDUCATE

image108.emf

