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1 INTRODUCTION
The challenge of this experiment is to design a feedback controller that dampens out the swinging of a single pen-
dulum load suspended from a two degree of freedom (2 DOF) joint.

The 2 DOF Gantry setup is based on the 2 DOF Robot configuration. For more information on the 2 DOF Robot,
see the 2 DOF Robot User Manual [4]. The 2 DOF joint module attaches underneath the end-effector of the four-bar
linkage system. The module consists of an instrumented 2 DOF joint to which a 12-inch rod is mounted and free to
swing about two orthogonal axes. The controller must reduce the swinging of the load when it is disturbed or when
the 2 DOF robot is commanded to move the load in its workspace.

A few real-world applications of the gantry problem include, for example, a crane lifting and moving a heavy payload,
or a pick-and-place gantry robot of an assembly line

The laboratory objective is to design two independent state-feedback controllers, using LQR, for the two actuated
rotary joints which should reduce the swinging of the load (pendulum) attached to the 2 DOF joint.

Topics Covered

• Obtain a state-space representation of the open-loop system.

• Design and tune an LQR-based state-feedback controller satisfying the closed-loop system’s desired design
specifications.

• Simulate the system and ensure it meets the given specifications.

• Implement your state-feedback controller on the 2 DOF Gantry system and evaluate its actual performance.

• Examine the disturbance response of the stabilized suspended-pendulum-robot system, in response to a tap
to the pendulum.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. See the system requirements in Section 4 for the required hardware and software.

2. Modeling and state-space representation.

3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.

4. Basics of L VIEW™ .

5. LabVIEW Integration lab detailed in Appendix A in the SRV02 Workbook [2].
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2 BACKGROUND
The 2 DOF Gantry is modeled as two de-coupled rotary gantry systems. The linearized model is then used with the
Linear-Quadratic Regular (LQR) technique to design the feedback gain.

2.1 Modeling

If the end-effector does not deviate greatly from the zero or home position, we assume that the coupling between the
two axes is low. With this assumption, the system is modeled as two 1 DOF rotary gantry systems where the x-axis
servo controls the gantry angle in the x direction and the y-axis servo controls the gantry angle in the y direction.
This section will summarize how to model a single rotary gantry system.

2.1.1 Model Convention

The rotary pendulum model is shown in Figure 2.1. The rotary arm pivot is attached to the SRV02 system and is
actuated. The arm has a length of Lr, a moment of inertia of Jr, and its angle, θ, increases positively when it rotates
counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control voltage
is positive, i.e., Vm > 0.

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center of mass is Lp

2 .
The moment of inertia about its center of mass is Jp. The inverted pendulum angle, α, is zero when it is perfectly
upright in the vertical position and increases positively when rotated CCW.

2 DOF Gantry HOME Position
Recall from the 2 DOF Robot User Manual [4] that the home position of the 2 DOF Robot is represented by the
schematic illustrated in Figure 2.2. This is defined when both both actuated servo joints are zero, i.e., θx = 0 and θy
= 0. In the home position, the 2-DOF Gantry is assumed to be suspended underneath the end-effector at point E
and motionless. Thus the angle of both orthogonal gantry joints are defined αx = 0 and αy = 0.

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the rotary arm and the pendulum with respect to the
servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi

The variables qi are called generalized coordinates. For this system let

q(t)⊤ = [θ(t) α(t)] (2.1)

where, as shown in Figure 2.1, θ(t) is the rotary arm angle and α(t) is the inverted pendulum angle. The corre-
sponding velocities are

q̇(t)⊤ =

[
∂θ(t)

∂t

∂α(t)

∂t

]

Note: The dot convention for the time derivative will be used throughout this document, i.e., θ̇ = dθ
dt . The time

variable t will also be dropped from θ and α, i.e., θ = θ(t) and α = α(t).
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Figure 2.1: Rotary gantry conventions

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1

∂2L

∂t∂α̇
− ∂L

∂α
= Q2

The Lagrangian of the system is described
L = T − V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system’s kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the rotary arm is

Q1 = τ −Dr θ̇

and acting on the pendulum is
Q2 = −Dpα̇.

See [1] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km). Our
control variable is the input servo motor voltage, Vm. Opposing the applied torque is the viscous friction torque, or
viscous damping, corresponding to the term Dr. Since the pendulum is not actuated, the only force acting on the
link is the damping. The viscous damping coefficient of the pendulum is denoted by Dp.
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Figure 2.2: 2 DOF Robot HOME Position.

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the SRV02
rotary pendulum are:(

mpL
2
r +

1

4
mpL

2
p −

1

4
mpL

2
p cos(α)2 + Jr

)
θ̈ −

(
1

2
mpLpLr cos(α)

)
α̈

+

(
1

2
mpL

2
p sin(α) cos(α)

)
θ̇α̇+

(
1

2
mpLpLr sin(α)

)
α̇2 = τ −Dr θ̇ (2.2)

1

2
mpLpLr cos(α)θ̈ +

(
Jp +

1

4
mpL

2
p

)
α̈− 1

4
mpL

2
p cos(α) sin(α)θ̇2

+
1

2
mpLpg sin(α) = −Dpα̇. (2.3)

The torque applied at the base of the rotary arm (i.e., at the load gear) is generated by the servo motor as described
by the equation

τ =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm
. (2.4)

See [1] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km).

Both the equations match the typical form of an EOM for a single body:

Jẍ+ bẋ+ g(x) = τ1

where x is an angular position, J is the moment of inertia, b is the damping, g(x) is the gravitational function, and τ1
is the applied torque (scalar value).

For a generalized coordinate vector q, this can be generalized into the matrix form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.5)

where D is the inertial matrix, C is the damping matrix, g(q) is the gravitational vector, and τ is the applied torque
vector.

The nonlinear equations of motion given in 2.2 and 2.3 can be placed into this matrix format.
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2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

z⊤ = [z1 z2]

and f(z) is to be linearized about the operating point

z0
⊤ = [a b]

The linearized function is

flin = f(z0) +

(
∂f(z)

∂z1

) ∣∣∣∣
z=z0

(z1 − a) +

(
∂f(z)

∂z2

) ∣∣∣∣
z=z0

(z2 − b)

2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.6)

and
y = Cx+Du (2.7)

where x is the state, u is the control input, A, B, C, andD are state-space matrices. For the rotary pendulum system,
the state and output are defined

x⊤ = [θ α θ̇ α̇] (2.8)
and

y⊤ = [x1 x2]. (2.9)

After linearizing the nonlinear equations of motion given in equations 2.2 and 2.3, solving for the acceleration terms
θ̈ and ¨alpha, and substituting the state given in , we obtain the following state-space matrices:

A =
1

JT


0 0 1 0
0 0 1
0 1

4m
2
pL

2
pLrg −

(
Jp +

1
4mpL

2
p

)
Dr

1
2mpLpLrDp

0 − 1
2mpLpg

(
Jr +mpL

2
r

)
1
2mpLpLrDr −

(
Jr +mpL

2
r

)
Dp


and

B =
1

JT


0
0

Jp +
1
4mpL

2
p

− 1
2mpLpLr

 .

In the output equation, only the position of the servo and link angles are being measured. Based on this, the C and
D matrices in the output equation are

C =

[
1 0 0 0
0 1 0 0

]
(2.10)

and
D =

[
0
0

]
. (2.11)

The 2 DOF Gantry does not have a rotary arm as described in Figure 2.1, it has a four-bar linkage. Thus the length
of the ’arm’ in terms of the link length Lb is defined as

Lr =
√
L2
b + L2

b =
√
2Lb.

The velocities of the servo and pendulum angles can be computed in the digital controller, e.g., by taking the deriva-
tive and filtering the result though a high-pass filter.
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2.2 Control

In Section 2.1, we found a linear state-state space model that represents a single rotary gantry system. This model is
used to investigate the stability properties of the system in Section 2.2.2. In Section 2.2.3, the notion of controllability
is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the control gain and
is discussed in Section 2.2.4. Lastly, Section 2.2.5 describes the state-feedback control used to control the servo
position while minimizing link deflection.

2.2.1 Specifications

For our application, the suspended pendulum response performance can be assessed in terms of speed of response,
minimum oscillation, and position accuracy. The time-domain specifications for both the servo and pendulum in the
X- and Y-axes are:

Specification 1: Servo angle settling time: ts <= 1.5 s.

Specification 2: Servo angle percentage overshoot: PO <= 7.5 %.

Specification 3: Servo angle steady-state error: ess <= 0.5 deg.

Specification 4: Maximum pendulum angle deflection: |α|max <= 5 deg.

Specification 5: Maximum control effort / voltage: |Vm| <= 15 V.

Thus when tracking a given reference, the response from the X and Y servo should have a settling time less than or
equal to 1.5 seconds, an overshoot less than or equal to 7.5 %, and the steady-state response should have less then
0.5 degree error. The pendulum, in both the X and Y axes, must be kept within ±5 degrees. Finally, the controller
must not surpass the limits of the SRV02 motors and amplifiers.

2.2.2 Stability

The stability of a system can be determined from its poles ([5]):

• Stable systems have poles only in the left-hand plane.

• Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

• Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system’s characteristic equation. From the state-space, the characteristic equation of
the system can be found using

det (sI −A) = 0 (2.12)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.3 Controllability

If the control input, u, of a system can take each state variable, xi where i = 1 . . . n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([5]).

Rank Test The system is controllable if the rank of its controllability matrix

T =
[
B AB A2B . . . AnB

]
(2.13)
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equals the number of states in the system,
rank(T ) = n. (2.14)

2.2.4 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.6, find a control input u that minimizes the cost function

J =

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) dt, (2.15)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law u = −Kx, the state-space in Equation 2.6 becomes

ẋ = Ax+B(−Kx)

= (A−BK)x

2.2.5 Feedback Control

The feedback control loop that in Figure 2.3 is designed to stabilize the servo to a desired position, θd, while mini-
mizing the deflection of the pendulum.

The reference state is defined
xd = [θd 0 0 0] (2.16)

and the controller is
u = K(xd − x). (2.17)

Note that if xd = 0 then u = −Kx, which is the control used in the LQR algorithm.

Figure 2.3: State-feedback control loop
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3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the LabVIEW VI shown in Figure 3.1 to simulate the closed-loop control of the 1 DOF
Rotary Gantry system. Recall in Section 2.1 the 2 DOF Gantry is modeled as two independent and identical gantry
systems. We will only be examining the 1 DOF portion. The Rotary Gantry is simulated using a nonlinear model (it
represents the actual system better than a linear model).

The VI uses the state-feedback control described in Section 2.2.5. You can switch between full-state and partial-state
feedback. In partial state-feedback, the user can examine how the system behaves when you cannot compensate
for the swinging motions of the gantry. The feedback gainK is found using the LQR VI from the LabVIEW Simulation
and Control Design Module (LQR is described briefly in Section 2.2.4). The goal is to find a gain that will satisfy the
specifications given in Section 2.2.1.

Figure 3.1: VI used to simulate 1 DOF Rotary Gantry.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the rotary gantry:

1. Open and run the Gantry Control Design.vi as described in Section 4. Make sure you choose your model file
using the File Path control.
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2. By default, the Q matrix is sent to identity matrix. Set the LQR weighting matrices in to

Q =


250 0 0 0
0 1 0 0
0 0 5 0
0 0 0 20


and R = 1.

3. This automatically generates the gain

K =
[
15.8 −26.0 4.05 −0.53

]
.

Remark: When tuning the LQR, Q(1, 1) effects the servo proportional gain while Q(3, 3) effects the servo
derivative gain (which reduces the overshoot). Increasing Q(4, 4) attenuates the motions of the pendulum.

4. The Signal Generator in the VI block diagram are already setup to generate a 0.1 Hz square wave reference.

5. Set the Amplitude (deg) controls to 10 degrees to generate a step with an amplitude of 10 degrees (i.e., square
wave goes between ±10 which results in a step amplitude of 10).

6. Go to the Scopes tab to view the servo gear position scope, the pendulum angle scope, and the motor input
voltage scope.

7. To simulate full-state feedback (FSF), set the switch to the Full-State Feedback.

8. Click on Run Simulation OK button. By default, the simulation runs for 15 seconds. The scopes should be
displaying responses similar to Figure 3.2. Note that in the servo scope, the blue trace is the setpoint position
and the red trace is the simulated position.

Figure 3.2: Simulated closed-loop response.
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9. This is an interative design process. You can go back and change your Q and R matrices, acquire a new
control gain K, and then run the simulation again by pressing the OK button.

10. Click on the STOP button to stop running the VI.

3.1.2 Full-State Feedback Analysis

The full-state feedback response is shown in Figure 3.2. If you go to the Measure tab in the VI, the cursors can be
used to take more precise response measurements, as shown in Figure 3.3.

(a) Servo Angle

(b) Pendulum Angle

Figure 3.3: Simulated 1 DOF Gantry full-state feedback response.

From the Servo Angle response shown in Figure 3.3, it is clear that the steady-state error is zero, thus

ess = 0.

The 4% settling time is how much time it takes to decay back down to 10+0.04× 10 = 10.4 deg, which is about 6.22
seconds using Cursor 0. Therefore the settling time is

ts = 6.22− 5 = 1.22 sec
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Using Cursor 1, the overshoot goes up to 11.37 degrees, so the percent overshoot is

PO = 100

(
11.37− 10

20

)
= 6.85 %.

Using Cursor 0 on the Pendulum Angle measurement, we find that the maximum deflection of the pendulum is

|α|max = 4.1 deg

The simulated response satisfies the specifications given in Section 2.2.1 while maintaining a motor input voltage
less than 15 V, i.e., the motor is not saturated.

3.1.3 Partial-State Feedback Analysis

Using the same gain, K, that was used in the full-state feedback simulation, run the simulation when the Manual
Switch is set to Partial-State Feedback mode. See the typical response obtained in Figure 3.4.

Figure 3.4: Simulated 1 DOF Gantry partial-state feedback response.

As shown the pendulum (i.e., crane) tends to oscillate much more as the servo rotates to track its desired position.
The servo response is also slowed down. The steady-state error, settling time, percent overshoot, and maximum
deflection of the simulated partial-state feedback response are

ess = 0 deg
ts = 5.9− 5 = 1.9 sec

PO = 100

(
10.1− 10

20

)
= 0.5 %.

|α|max = 7.2 deg

These measurements were taken using the graphs in the Measure tab.
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3.2 Implementation

The 2 DOF Gantry Control VI shown in Figure 3.5 is used to perform the gantry control on the 2 DOF Gantry. The
VI contains drivers that interface with the DC motor and sensors of the 2 DOF Gantry system.

Figure 3.5: VI used to run controller on the 2 DOF Gantry.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:

1. Run the VI using the LQR weighting matrices that you used in the simulation in Section 3.1. See Section 4 for
more information.

2. The Signal Generator functions in the VI are already setup to generate a 0.1 Hz square wave reference.

3. Set the Amplitude (deg) controls to 10 degrees to generate a step with an amplitude of 10 degrees (i.e., square
wave goes between ±10 which results in a step amplitude of 10).

4. Go to the Scopes tab to view the servo position, pendulum angle, and the motor input voltage scopes for both
the X and Y axes.

5. Set the switch to the Full-State Feedback.

6. Make sure the system is in the HOME position, as shown in Section 2.1.1 (see [4] for more information).

7. Run the VI. The servos should beging rotation back-and-forth and the gantry should be moving in a square-like
fashion. The scopes should be displaying responses similar to Figure 3.6.
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Figure 3.6: Typical response when running control on 2 DOF Gantry system

3.2.2 Full-State Feedback Analysis

The closed-loop position response is shown in Figure 3.6. By going to the Measure tab, you can take precise
measurement off the responses. In this case, only X and Y servo angle response are included (we can analyze the
pendulum deflection angle using the ordinary scopes).

(a) Servo X-Axis

(b) Servo Y-Axis

Figure 3.7: 2 DOF Gantry full-state feedback response

Similarly as in Section 3.1.2, we can use cursors to take our measurements. For the x-axis shown in Figure 3.7, the
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steady-state error, settling time, percentage overshoot, and maximum pendulum deflection are:

ess = 10− 9.23 = 0.77 deg,
ts = 6.26− 5 = 1.26 sec,

PO = 0%, and
|α|max = 2.4 deg

Note: Since the response settles at 9.23 degrees, the settling time is the time it takes to settle withing 4 % of 9.23,
which is (9.23− 0.04× 9.23) = 8.86 degrees.

For the y-axis the measured specifications are:

ess = 10− 9.97 = 0.03 deg,
ts = 6.36− 5 = 1.36 sec,

PO = 0%, and
|α|max = 2.7 deg.

In this case, because there is no overshoot we find the time it takes to settle to 9.6 degrees (10− 0.04× 10 = 9.6).

Most of the responses match the specifications given in Section 2.2.1. However, the steady-state error of servo X
does not match the specifications. This may be due to the friction in the servo gears and/or the effects introduced
by the four-bar linkage coupling. With further tuning of the LQR, this could be improved.

3.2.3 Partial-State Feedback Analysis

After running the 2 DOF Gantry VI when the Manual Switch is set to Partial-State Feedback mode with the same
gain K, we obtain the response shown in Figure 3.8.

Figure 3.8: 2 DOF Gantry partial-state feedback response

As in the simulation, the pendulum tends to swing more as the servos track their desired angles. The specifications
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measured on the partial-state feedback response captured in Figure 3.8 for the x-axis are:

ess = 10− 9.49 = 0.51 deg,
ts = 6.32− 5 = 1.32 sec,

PO = 0%, and
|α|max = 3.5 deg

and for the y-axis:

ess = 10− 9.4 = 0.6 deg,
ts = 6.86− 5 = 1.86 sec,

PO = 0%, and
|α|max = 5.8 deg.

The settling time on both servos increased, i.e., servo response has slowed down, and the y-axis no longer satisfies
the specifications given in Section 2.2.1. The pendulum swing along the y-axis exceeds the maximum deflection
limit as well.
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4 SYSTEM REQUIREMENTS
Required Software

Make sure L VIEW™ is installed with the following required add-ons:

1. L VIEW™

2. NI-DAQmx

3. NI L VIEW™ Control Design and Simulation Module

4. NI L VIEW™ MathScript RT Module

5. Q R C P T r

Note: Make sure the Quanser Rapid Control Prototyping (RCP) Toolkit is installed after LabVIEW. See the RCP
Toolkit Quick Start Guide for more information.

Required Hardware

• Data acquisition (DAQ) devicewith four encoder inputs and that is compatible with Q R C
P T r. This includes Quanser DAQ boards such as Q8-USB, QPID, and QPIDe and some
National Instruments DAQ devices.

• 2x Quanser SRV02-ET rotary servos.

• Quanser 2 DOF Robot (four bar linkage attached to the SRV02 units).

• Quanser SRV02 2 DOF Gantry (attached to end-effector on 2 DOF Robot).

• Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

• L VIEW™ is installed on your PC.

• DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the Analog
Loopback Demo).

• SRV02 2 DOF Gantry and amplifier are connected to your DAQ board as described its User Manual [3].
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4.1 Overview of Files

File Name Description
2 DOF Gantry User Manual.pdf This manual describes the hardware of the 2 DOF Gantry

system and explains how to setup and wire the system for
the experiments.

2 DOF Gantry Laboratory Guide.pdf This document demonstrates how to obtain the linear
state-space model of the system, simulate the closed-loop
system, and implement controllers on the 2 DOF Gantry
plant using L VIEW™ .

2 DOF Gantry.lvproj 2 DOF Gantry LabVIEW project that contains all the VIs
required for the lab.

Gantry Modeling.vi VI used to generate the linear state-space model of a 1
DOF Rotary Gantry system.

Gantry Control Design.vi VI used to design the LQR state-feedback gain and simu-
late the 1 DOF Rotary Gantry system.

2 DOF Gantry Control.vi VI that implements the state-feedback control on the 2
DOF Gantry system.

gantry.mws Maple worksheet used to develop the model for a Rotary
Gantry (1 DOF) experiment. Waterloo Maple 15, or a later
release, is required to open, modify, and execute this file.

gantry.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 15 installed. No modifications to the equations
can be performed when in this format.

Table 4.1: Files supplied with the 2 DOF Gantry

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the Gantry Modeling and Gantry Control Design VIs
must must be configured.

Figure 4.1: LabVIEW Rotary Gantry
Project

Follow these steps:

1. Load L VIEW™ .

2. Open the 2 DOF Gantry.lvproj LabVIEW project, shown in Figure 4.1.

3. Open the Gantry Modeling.vi shown in Figure 4.2.

4. The pendulum and SRV02 parameters are already set, by default.
Run the VI to generate the linear state-space model.

5. In Model Name, enter the name of the model you and click on OK.
This will save the state-space model under the folder Gantry Model.
You can close this VI now.

6. Open the Ganry Control Design VI, shown in Figure 3.1.

7. Using the File Path control, select the model file.

8. Run the VI. The state-space model should load. You are now ready
to design your LQR control and simulate the closed-loop response.
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Figure 4.2: Gantry Modeling VI

4.3 Setup for Running on 2 DOF Gantry

Before performing the in-lab exercises in Section 3.2, the 2 DOF Gantrysystem and the 2 DOF Gantry.vi must be
configured properly.

Follow these steps to get the system ready for this lab:

1. Setup the SRV02 with the 2 DOF Gantry module as detailed in the 2 DOF Gantry User Manual [3].

2. Make sure the 2 DOF Gantry is in the HOME position, as depicted in Section 2.1.1. For more information
about the HOME position, go to the 2 DOF Gantry User Manual.

3. Open the 2 DOF Gantry Control.vi, shown in Figure 3.5.

4. Set gain K control in the VI to the value found in Section 4.2 (or another gain you want to test on the system).

5. Configure DAQ:Ensure the HIL Initialize block is configured for the DAQ device that is installed in your system.
To do this, go to the block diagram (CTRL-E) and double click on the HIL Initialize Express VI shown in Figure
4.3.

Figure 4.3: HIL Initialize Express VI

6. Under the Main tab, select the data acquisition device that is installed on your system in the Board type section.
For example, in Figure 4.4 the Q8-USB is chosen.
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Figure 4.4: Select DAQ board that will be used to control system

2 DOF GANTRY Laboratory Guide 22



REFERENCES
[1] Quanser Inc. SRV02 User Manual, 2009.

[2] Quanser Inc. SRV02 lab manual. 2011.

[3] Quanser Inc. 2 DOF Gantry User Manual, 2012.

[4] Quanser Inc. 2 DOF Robot User Manual, 2012.

[5] Norman S. Nise. Control Systems Engineering. John Wiley & Sons, Inc., 2008.

2 DOF GANTRY Laboratory Guide v 1.1



CAPTIVATE. MOTIVATE. GRADUATE. 
Solutions for teaching and research. Made in Canada.

INFO@QUANSER.COM     +1-905-940-3575     QUANSER.COM  

Flexible LinkInverted 
Pendulum

Flexible Joint Ball and Beam Gyro/Stable 
Platform
Gyro/Stable Double Inverted 

Pendulum
Double Inverted 
Pendulum

2 DOF Gantry Rotary Servo Base Unit 

Over ten rotary experiments for teaching fundamental and advanced controls concepts

Quanser’s rotary collection allows you to create experiments of varying complexity – from basic to advanced. Your lab 
starts with the Rotary Servo Base Unit and is designed to help engineering educators reach a new level of efficiency 
and eff ectiveness in teaching controls in virtually every engineering discipline including electrical, computer, mechanical, 
aerospace, civil, robotics and mechatronics. For more information please contact info@quanser.com

©2012 Quanser Inc. All rights reserved.

Multi-DOF Torsion2 DOF Robot 2 DOF Inverted 
Pendulum
2 DOF Inverted 
Pendulum


	1 Introduction
	2 Background
	2.1 Modeling
	2.2 Control

	3 Lab Experiments
	3.1 Simulation
	3.2 Implementation

	4 System Requirements
	4.1 Overview of Files
	4.2 Setup for Simulation
	4.3 Setup for Running on 2 DOF Gantry


