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1 INTRODUCTION

The objective of this laboratory is to develop a feedback system to track the linear cart to a commanded position
while minimizing the swing of the suspended pendulum. A full-state-feedback controller using pole placement is
designed to control the position of the pendulum tip within a specified set of requirements.

Topics Covered

Developing of a mathematical model of the pendulum in the gantry configuration using Lagrangian mechanics.

Linearizing nonlinear equations of motion

Obtaining the linear state-space representation of the open-loop system

Designing a state-feedback control system using pole placement

Simulating the closed-loop system to ensure that the specifications are met

Implementing the controller on the IP02 plant and evaluating its performance

Prerequisites

In order to successfully carry out this laboratory, the user should be familiar with the following:

The required software and hardware outlined in Section 4.

State-space modeling fundamentals.

Some knowledge of state-feedback.

Basics of QUARC®.

Laboratory described in the QUARC Integration [2] in order to be familiar using QUARC®with the IP02.




2 MODELING

2.1 Background

2.1.1 Model Convention

The linear Single Pendulum Gantry (SPG) model is shown in Figure 2.1. The pendulum pivot is on the IP02 cart,
and is measured using the Pendulum encoder. The centre of mass of the pendulum is at length, /,,, and the moment
of inertia about the centre of mass is J,. The pendulum angle, «, is zero when it is suspended perfectly vertically
and increases positively when rotated counter-clockwise (CCW). The positive direction of linear displacement of the
cart, z., is to the right when facing the cart. The position of the pendulum centre of gravity is denoted as the (z,, y,)

coordinate.
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Figure 2.1: Linear Gantry Pendulum schematic

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robotic manipulators with multiple joints.

More specifically, the dynamics equations that describe the motion of the linear cart and pendulum with respect to
the motor voltage will be obtained using the Euler-Lagrange equation:

w IP02 PENDULUM GANTRY Workbook - Student Version v1.0
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The variables g; are called generalized coordinates. For this system let

()" = [we(t) a(t)] (2.1)

where z.(t) is the cart position and «(t) is the pendulum angle. The corresponding velocities are

o = [0 900

ot ot

Note: The dot convention for the time derivative will be used throughout this document, i.e., . = d;;. The time
variable t will also be dropped for z. and «, i.e., z. = z.(t) and a = «(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the linear pendulum gantry are:

%L oL
ooz, ow.
0*L oL Q
otoe  da  7°
The Lagrangian of the system, L, is described:
L=T-V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Therefore, the
Lagrangian represents the difference between the kinetic and potential energy of the system.

According to the reference frame definition shown in Figure 2.1, the Cartesian coordinates of the centre of gravity
of the pendulum are defined by:
Tp = X + Ly sin(a)
and
yp = —lp cos(a)

Since the linear motion of the cart is fixed vertically, the total potential energy of the system can be expressed as
the gravitational potential energy of the pendulum:
Vp = —M,gl, cos(a) (2.2)

The total kinetic energy of the system is the sum of the translational and rotational kinetic energies arising from the
cart and pendulum. The translational kinetic energy of the cart, T,;, can be expressed as:

1
T =-Mz.2?
2
and the rotational energy due to the DC motor, T.r, is:

B lnngKngQ
) r,%w

where the corresponding IP02 parameters are defined in the IPO2 User Manual [3]. If we combine the kinetic energy
equations together, the resultant total kinetic energy of the cart is:

1
T, = §Jeqx'£ (2.3)




where )
K2,
Jog = M + =g e
Tip

The pendulum translational kinetic energy can be expressed as a function of the linear velocity of the centre of
gravity:

T,

1
pt = 5 M,

5 Mo/ 7p” + 1) (2.4)
where the components of the linear velocity of the pendulum centre of gravity are defined by:
Zp = Zc + 1l cos(a)a
and
Up = lp Sin(a)c.

The rotational kinetic energy of the pendulum is defined as:

1
Tpr = 50" (2.5)

where the parameters of the pendulum are listed in the SIP and SPG User Manual [5].

The total kinetic energy of the system can be found by combining the kinetic energy of the cart in Equation 2.3, with
the pendulum kinetic energy in Equation 2.4 and Equation 2.5:

1 1
Tr = 3 (Jeq + My)ac® + Myl cos()ac + 3 (J, + Myl)a> (2.6)

The generalized forces, @., and @Q,, are used to describe the non-conservative forces (e.g., friction) applied to a
system with respect to the generalized coordinates. The generalized force acting on the linear cart is:

Qa:c = Fc - Beqiﬁc (27)
and acting on the pendulum is
Qo = —Bpa. (2.8)

Note: The nonlinear Coulomb friction applied to the linear cart, and the force on the linear cart due to the pendulum's
action have been neglected in the dynamic model.

By substituting the total kinetic and potential energy of the system shown in Equation 2.2 and Equation 2.6, and the
generalized forces into the Euler-Lagrange formulation, the nonlinear Equations of Motion (EOM) are:

(Jeq + Mp)de + Myl, cos(a)d — Myl sin(a)é? = F, — Bega. (2.9)
and

Myl, cos(a)de + (Jp + Mpl2)é + Mylygsin(a) = —Byd. (2.10)

The linear force applied to the cart, F, is generated by the servo motor and described by the equation:

F. = (ngKgKt> (_KgKmlL'c +77mvm> (211)

R, T'mp T'mp

where the servo motor parameters are defined in the IP02 User Manual [3].
Both the equations match the typical form of an EOM for a single body:

Q
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where z is a linear position, .J is the moment of inertia, b is the damping, ¢g(z) is the gravitational function, and F; is
the applied force (scalar value).

For a generalized coordinate vector ¢, this can be generalized into the matrix form

D(q)i+C(q,4)4+g(q) = F (2.12)

where D is the inertial matrix, C' is the damping matrix, g(q) is the gravitational vector, and F' is the applied force
vector.

The nonlinear equations of motion given in 2.9 and 2.10 can be placed into this matrix format.

2.1.3 Linearization

Here is an example of how to linearize a two-variable nonlinear function, f(z). Variable z is defined
T
z' =z 29]

and f(z) is to be linearized about the operating point

The linearized function is

0 0
Fuim = f(z0) + ( g?) Z:ZO(zl —a)+ ( gz)) ZZZO(ZQ —b)
2.1.4 Linear State-Space Model
The linear state-space equations are
i = Az + Bu (2.13)
and
y=Cx+ Du (2.14)

where z is the state, v is the control input, A, B, C, and D are state-space matrices. For the linear pendulum gantry
system, the state and output are defined
! = [z, o & @] (2.15)
and
yT = [z1 22]. (2.16)

In the output equation, only the position of the cart and pendulum angle is being measured. Based on this, the C
and D matrices in the output equation are

1000
C:{O o 0} (2.17)
and 0
D:M' (2.18)

The velocities of the servo and pendulum can be computed in the digital controller by taking the derivative and
filtering the result though a high-pass filter.




2.2 Pre-Lab Questions

1. Linearize the first nonlinear linear pendulum gantry equation, Equation 2.9. The initial conditions for all the
variables are zero, i.e., z., =0, a9 =0, 2,9 = 0, & = 0.

2. When the linearization procedure outlined in Section 2.1.3 is applied to the second nonlinear equation of motion
Equation 2.10, the process yields
(Mplyp) @ + (Jp + Mpl2) é + Mylpga = —Bpdt. (2.19)

Fit the two linear equations of motion into the matrix form shown in Equation 2.12. Make sure the equation is
in terms of z. and « (and their derivatives).

3. Solve for the acceleration terms in the equations of motion. You can either solve this using the two linear
equations or using the matrix form. If you're doing it in the matrix form, recall that the inverse of a 2x2 matrix is

4 fa 0] 1 [d —b
S B @20

where det(A) = ad — be.

In any case, you'll have two equations of the form: z. = g1 (2., a, @, &) and & = go(zc, @, Z¢, &). Make sure
you collect the terms with respect to the z., «, 2., and & variables.

4. Find the linear state-space of the linear gantry pendulum system.

S
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2.3 In-Lab Exercises

The goal of this laboratory is to explore the state-space model of the linear gantry pendulum. You will conduct an
experiment to validate the model by comparing the response of the model to the response of the actual system.

2.3.1 Model Analysis

1. Run the setup_ip02_spg script. The IP02 linear cart and pendulum model parameters are automatically loaded
using the config_ip02.m and config_sp.m functions. It then calls the SPG_ABCD_eqns_student.m script to load
the model in the Matlab workspace.

2. Open the SPG_ABCD_eqns_student.m script. The script should contain the following code:

eye(4,4);
= [0;0;0;1];
eye(2,4);
zeros(2,1);

OQ W=
1]

%Actuator Dynamics

A(3,3) = A(3,3) - B(3)*eta_g*Kg 2xeta_m*Kt*Km/r_mp~2/Rm;
A(4,3) = A(4,3) - B(4)*eta_g*Kg~2xeta_m*Kt*Km/r_mp~2/Rm;
B = eta_g*Kg*eta_m*Kt/r_mp/Rm*B;

The representative C' and D matrices have already been included. You need to enter the state-space matrices
A and B that you found in Section 2.2. The actuator dynamics have been added to convert your state-space
matrices to be in terms of voltage. Recall that the input of the state-space model you found in Section 2.2 is the
force acting on the IP02 cart. However, we do not control force directly - we control the servo input voltage. The
above code uses the voltage-torque relationship given in Equation 2.11 in Section 2.1.2 to transform torque to
voltage.

3. Run the SPG_ABCD_eqns_student.m script to load the state-space matrices in the Matlab workspace. Show
the numerical matrices that are displayed in the Matlab prompt.

4. Using MATLAB, find the open-loop poles of the system.

Before ending this lab... To do the pre-lab questions in Section 3.3, you need the A and B matrices (numerical
representation) and the open-loop poles. Make sure you record these.

2.3.2 Model Validation

Experimental Setup

The q_spg_mdI.mdl Simulink diagram shown in Figure 2.2 is used to confirm that the actual system hardware matches
the state-space model derived in Section 2.1.4. The QUARC blocks are used to interface with encoders and DC
motor of the system. For more information about QUARC, see Reference [2]. This model outputs the pendulum link
angles and can apply a voltage to the DC motor.

Note: Before you can conduct these experiments, you need to make sure that the lab files are configured according
to your IP02 and pendulum setup. If they have not been configured already, then go to Section 4.2 to configure the
lab files before you begin.

1. Make sure that you have completed the procedure in Section 2.3.1 and the state-space parameters are present
in the MATLAB workspace.

2. Double-click on the Signal Generator block and ensure the following parameters are set:




e {m)

zlpha {rad)
] =
xc_dot {ms)

Paositicn S . Amplifier Voltage
Setpoint etpoint Limit - :
P Amplitude (Vm) alpha_dot {radis) P K_sim
SPG + |P02: Scopes
Actual Flant
- u=Vm | ¥ = Ax+Bu
bl "1 v=Cx+Du

Sim: Amplifier Voltage

Saturation SPG + IF02:

State-Space Model

Figure 2.2: g_spg-mdl Simulink diagram used to confirm system model

Wave form: square
Amplitude: 1.0
Frequency: 0.8

e Units: Hertz

Set the Amplitude (V) slider to 1.2 V.
Open the pendulum tip and cart position scopes, Pend Tip Pos (mm) and xc (mm).
Click on QUARC | Build to compile the Simulink diagram.

Ensure the pendulum is in the hanging down position and is motionless.

N o g b~ w

Select QUARC | Start to run the controller. The IP02 cart should begin moving back and forth along the track,
and the scopes should be as shown in figures Figure 2.4 and Figure 2.3. Recall that the yellow trace is the
measured position and the purple trace is the simulated position.

B < (mm) s @] %

EEIEEE EEIEEE o

Figure 2.3: Simulated and measured cart position

S
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B Pend Tip Pos (mm) =

SE(CL,L, AEE PAF 2

Figure 2.4: Simulated and measured pendulum position

8. Create a MATLAB figure that compares the simulated and experimental response of the pendulum and cart
position, and provide two reasons why the model does not represent the IP02 and pendulum gantry with better
accuracy. When the model is stopped, the Pend Tip Pos (mm) scope saves the last five seconds of response
data to the MATLAB workspace in the data_pend_pos parameter. The cart position data is saved in the data_xc
parameter. The variables have the following structure: data_x(:, 1) is the time vector, data_x(:,2) is the measured
position, and data_x(:,3) is the simulated position.




S GANTRY CONTROL

3.1 Specifications

The response of the tip of the suspended pendulum should satisfy the following requirements:

e Percent Overshoot: PO <5 %

Percent Undershoot: PU <10 %

Settling Time (2%): ¢, < 2.2s

Steady-state Error: ¢,, =0

Maximum Control Effort (V): |V,,,| < 10 V.

Note: The previous specifications are given in response to a £30 mm square wave cart position setpoint. PO and
PU are defined to limit the relative endpoint position of the gantry.

3.2 Background

In the Pendulum Gantry Modeling experiment presented in Section 2, we found a linear state-space model that
represents the linear pendulum gantry system. In Section 2.3.1 we found that the system has poles in the left-hand
plane making it stable, but two complex-conjugate poles with a very low corresponding damping ratio. The linear
pendulum gantry system is thus largely underdamped, and as a consequence requires a state-feedback controller
in order to meet the settling time and overshoot design specifications presented in Section 3.1.

In Section 3.2.1, the notion of controllability is introduced. The procedure to transform matrices to their companion
form is described in Section 3.2.2. Once in their companion form, it is easier to design a gain according to the
pole-placement principles, which is discussed in Section 3.2.3. Lastly, Section 3.2.5 describes the state-feedback
control used to control the gantry pendulum.

3.2.1 Controllability

If the control input « of a system can take each state variable, x; where i = 1...n, from an initial state to a final state
then the system is controllable, otherwise it is uncontrollable.

Rank Test The system is controllable if the rank of its controllability matrix
T =[BAB A’B...A"B| (3.1)
equals the number of states in the system,

rank(T) = n.

3.2.2 Companion Matrix

If (A, B) are controllable and B is n x 1, then A is similar to a companion matrix. Let the characteristic equation of
Abe
"+ a,s" M 4. +a.

S
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Then the companion matrices of A and B are

0 | 0 0
0 0o - 0 0
A=| = : (3.2)
0 0 0 1
—a1 —Q2 --° —Gp-1 —an
and
0
B=l: (3.3)
0
1
Define .
W =171

where T is the controllability matrix defined in Equation 3.1 and

T=[BBA...BA".

Then -
WiAw = A

and

W~'B=B.

3.2.3 Pole Placement

If (A,B) are controllable, then pole placement can be used to design the controller. Given the control law © = — Kz,
the state-space in Equation 2.13 becomes

& = Az+ B(—Kz)
(A— BK)x

We can generalize the procedure to design a gain K for a controllable (A,B) system as follows:

Step 1 Find the companion matrices A and B. Compute W = 771

Step 2 Compute K to assign the poles of A — BK to the desired locations. Applying the control law « = —Kz to
the general system given in Equation 3.2,

0 1 0 0
0 0 0 0
A= : : : : (3.4)
0 0 0 1
—a1—k1 —as—key -+ —Gp-1—kp_1 —an—ky

Step 3 Find K = KW ! to get the feedback gain for the original system (A,B).

Remark: It is important to do the K — K conversion. Remember that (A,B) represents the actual system while the
companion matrices A and B do not.




3.2.4 Desired Poles

The linear pendulum gantry system has four poles. As depicted in Figure 3.1, poles p; and p, are the complex
conjugate dominant poles and are chosen to satisfy the settling time and overshoot specifications given in Section
3.1. Let the conjugate poles be

p1 = —0 + jwgq (3.5)

and
P2 = —0 — jwq (3.6)

where 0 = (w,, and wy = w,/1 — (2 is the damped natural frequency. The natural frequency, w,,, and damping
ratio, ¢, required to meet the specifications outlined in Section 3.1 can be found using:

PO = 200mas = Ito) (3.7)
Ry
and A

The remaining closed-loop poles, ps and py, are placed along the real-axis to the left of the dominant poles, as shown
in Figure 3.1.

L1

P .
S Jo,
P 0= sin”'
= >R
Pa 2 p— 0
N —— —-jo,
P>

Figure 3.1: Desired closed-loop pole locations

3.2.5 Feedback Control

The feedback control loop that controls the pendulum gantry is illustrated in Figure 3.2. The reference state is defined
Tqg = [ch 00 0]
where z.4 is the desired cart position. The controller is

u=K(zq— x). (3.9)

S
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State-Feedback Inverted
Control Pendulum Plant

(A,B,C,D)

v

Figure 3.2: State-feedback control loop

1P02 PENDULUM GANTRY Workbook - Student Version



3.3 Pre-Lab Questions

1. Using the open-loop poles, find the characteristic equation of A.
Note: The poles are the roots of the system's characteristic equation.

2. Find the location of the two dominant poles, p; and p., based on the specifications given in Section 3.1. Place
the other poles at ps = —20 and py, = —40.

QUANSER

O
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3.4 In-Lab Exercises

3.4.1 Control Design

1. Using Matlab commands, determine if the system is controllable. Explain why.

2. The pole-placement procedure outlined in Section 3.2.3 can be performed automatically using a pre-defined
Compensator Design Matlab command. Find gain K using a Matlab pole-placement command that will place
the closed-loop poles at the desired locations found in Section 3.3.

3.4.2 Simulating the Gantry Control

Experiment Setup

The s_spg_pp Simulink diagram shown in Figure 3.3 is used to simulate the closed-loop response of the Linear
Pendulum Gantry using the state-feedback control described in Section 3.2.5 with the control gain K found in Section
3.4.1.

The Amplitude (m) gain block is used to change the pendulum position. The state-feedback gain K is read from the
Matlab workspace. The Simulink State-Space block reads the A, B, C, and D state-space matrices that are loaded
in the Matlab workspace. The Find State X block contains high-pass filters to find the velocity of the rotary arm and
pendulum.

SPG-plus-IP02 System Simulation:
Pole Assignment

Position Setpoint (m)

Amplifier Voltage

Ssturation SPGB + P02 Find State X

State-Space Model

/K/l Y =X =[ xc; alpha; xc_dot; alpha_dot]
“u e

StateFeedback Gain

Figure 3.3: s_spg_pp Simulink diagram used to simulate the state-feedback control

IMPORTANT: Before you can conduct this experiment, you need to make sure that the lab files are configured
according to your system setup. If they have not been configured already, go to Section 4.2 to configure the lab files
first. Make sure the model you found in Section 2.3 is entered in SPG_ABCD _eqns_student.m.

1. Run setup_ip02_spg.m. Ensure the gain K you found in Section 3.4.1 is loaded.

2. Run the s_spg_pp.mdl. The response in the scopes shown in Figure 3.4 and Figure 3.5 were generated using
an arbitrary feedback control gain. Plot the simulated response of the pendulum tip, and motor input voltage
obtained using your obtained gain K in a Matlab figure and attach it to your report.

Note: When the simulation stops, the last 10 seconds of data is automatically saved in the Matlab workspace
to the variables data_pend_pos and data_vm. The time is stored in the data_pend_pos(:,1) vector, the desired
and measured pendulum tip positions are saved in the data_pend_pos(;,2) and data_pend_pos(;,3) arrays, and
the control input is in the data_vm(:,2) structure.




u Tip Horizontal Pos (mm)

R ER Y E 3

Figure 3.4: Simulated pendulum tip position

u Control Effort: Vim (V) =

SBEPLL AEE AR ~

Figure 3.5: Simulated control action

3. Measure the pendulum response characteristics and control action. Are the specifications given in Section 3.1
satisfied?

4. Close the Simulink diagram when you are done.

3.4.3 Implementing the Gantry Controller

In this section, ths state-feedback control that was designed and simulated in the previous sections is run on the
actual IPO2 Linear Pendulum Gantry device.

Experiment Setup
The q_spg_pp Simulink diagram shown in Figure 3.6 is used to run the state-feedback control on the Quanser Linear

Q
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Pendulum Gantry system. The SPG + IP02: Actual Plant subsystem contains QUARC blocks that interface with the
DC motor and sensors of the system. The feedback developed in Section 3.4.1 is implemented using a Simulink
Gain block.

Scopss

Position Setpoint (m)

i
i 13
v¢w

Amplifier Voltage
Limit

SPG + IPD2.
Actus! Plant

X_meas = [ xc; alpha; xc_dot; alpha_dot ]

Full-State Feedback

Partial-State Fesdback

y=X_sim = [ xc; alpha; xc_dot; alpha_dot ]

Sim: Amplifier Voltags
stur:

Saturation i

State-Space Modsl

Figure 3.6: g_spg_pp Simulink diagram is used to run the pendulum gantry controller

IMPORTANT: Before you can conduct this experiment, you need to make sure that the lab files are configured
according to your system setup. If they have not been configured already, then go to Section 4.2 to configure the
lab files first.

1. Run setup_ip02_spg.m. Ensure the gain K you found in Section 3.4.1 is loaded.
Open the q_spg_pp Simulink diagram.

Turn ON the power amplifier.

> w0 DN

To generate a step reference, ensure the Signal Generator is set to the following:
e Signal type = square
e Amplitude = 1
e Frequency =0.1 Hz

5. In the Simulink diagram, set the Amplitude (m) gain block to 0.03 to generate a step with an amplitude of 30
millimeters (i.e., square wave goes between +0.03 m which results in a step amplitude of 0.06 m).

6. Go to QUARC | Build to build the controller.
7. Ensure the pendulum is in the hanging down position and is motionless.

8. Select QUARC | Start to begin running the controller. The scopes should display responses similar to figures
3.7 and 3.8. Note that in the Pend Tip Pos (mm) scope, the yellow trace is the setpoint, the purple trace is the
measured position, and the cyan trace is the simulated position.




B Pend Tip Pos (mm) =5 %

2B|([0LL ARBE B A S =

Figure 3.7: Simulated and measured cart position

B v Command (v) = B8] %

SEPeLr HERE 2EE >

Figure 3.8: Simulated and measured pendulum position

9. When a suitable response is obtained, click on the Stop button in the Simulink diagram toolbar (or select
QUARC | Stop from the menu) to stop running the code.

10. Generate a MATLAB figure showing the measured pendulum tip position response and its input voltage. As in
the s_spg_pp Simulink diagram, when the controller is stopped each scope automatically saves their response
to avariable in the MATLAB workspace. Thus, the Pend Tip Pos (mm) scope saves its response to the data_pos
variable and the V Command (V) scope saves its data to the data_vm variable.

11. Measure the steady-state error, the percent overshoot, and the settling time of the pendulum tip. Does the
response satisfy the specifications given in Section 3.17?

12. How could you alter the controller to compensate for the steady-state error?

3.4.4 Partial-State Feedback

1. Run setup_ip02_spg.m. Ensure the gain K you found in Section 3.4.1 is loaded.
2. Open the g_spg_pp Simulink diagram.

3. Turn ON the power amplifier.

4. To generate a step reference, ensure the Signal Generator is set to the following:

e Signal type = square
e Amplitude = 1

S
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12.

13.

e Frequency =0.1 Hz

In the Simulink diagram, set the Amplitude (m) gain block to 0.03 to generate a step with an amplitude of 30
millimeters (i.e., square wave goes between +0.03 m which results in a step amplitude of 0.06 m).

Go to QUARC | Build to build the controller.
Ensure the pendulum is in the hanging down position and is motionless.

Set the Manual Switch to the Partial-State Feedback (downward) position. Select QUARC | Start to begin
running the controller.

. Stop the controller once you have obtained a representative response.
10.
11.

Create a MATLAB figure representing the pendulum tip position response, as well as the input voltage.

Examine the difference between the partial-state feedback (PSF) response and the full-state feedback (FSF)
response. Explain why PSF control behaves this way by looking at the q_spg_pp Simulink diagram.

Click the Stop button on the Simulink diagram toolbar (or select QUARC | Stop from the menu) to stop the
experiment.

Turn off the power to the amplifier if no more experiments will be performed in this session.




4 SYSTEM REQUIREMENTS

Before you begin this laboratory make sure:

e QUARC®is installed on your PC, as described in Reference [4].

e You have a QUARC compatible data-aquisition (DAQ) card installed in your PC. For a listing of compliant DAQ
cards, see Reference [1].

e |P02 and amplifier are connected to your DAQ board as described Reference [5].

4.1 Overview of Files

File Name Description

Linear Pendulum Gantry Workbook (Student).pdf This laboratory guide contains a modeling and
gantry control experiment demonstrating state-
space modeling and feedback control of the
Quanser linear pendulum gantry. The in-lab exer-
cises are explained using the QUARC software.
setup_ip02_spg.m The main Matlab®script that sets the IP02 pendu-
lum gantry control parameters. Run this file only
to setup the laboratory.

config_ip02.m Returns the configuration-based IP02 model speci-
fications Rm, Jm, Kt, Eff- m, Km, Kg, Eff.g, M, r-mp,
and Beq.

config_sp.m Returns the configuration-based pendulum specifi-
cations.

d_ip02_spg_pp.m Determines the control gain K.

SPG_ABCD_eqgns_student.m Creates the student state space model of the linear
pendulum gantry system.

s_spg-pp.mdl Simulink file that simulates the closed-loop pendu-
lum gantry state-feedback control step response.

g-spg-pp.-mdl Simulink file that implements the closed-loop P02
lead speed controller using QUARC.

g-spg_mdl.mdl Simulink file that simulates and compares the state-

space model to the linear pendulum gantry.

Table 4.1: Files supplied with the Linear Pendulum Gantry Laboratory.

4.2 Configuring the IPO2 and the Lab Files

Before beginning the lab exercises the IP02 device, the g_spg_pp Simulink diagram and the setup_ip02_spg.m script
must be configured.

Follow these steps to get the system ready for this lab:

1. Set up the IP02 with the long pendulum and additional weight as described in [5].
2. Load the Matlab®software.

3. Browse through the Current Directory window in Matlab®and find the folder that contains the linear pendulum
gantry files, e.g. g_spg_pp.mdl.

Q

QUANSER




. Double-click on the q_spg_pp.mdl file to open the Simulink diagram shown in Figure Figure 3.6.

. Configure DAQ: Double-click on the HIL Initialize block in the Simulink diagram and ensure it is configured
for the DAQ device that is installed in your system. For instance, the block shown in Figure 3.6 is setup for the
Quanser Q2-USB hardware-in-the-loop board. See the QUARC Installation Guide [4] for more information on
configuring the HIL Initialize block.

. Repeat the HIL Initialize configuration for g_spg_madl.mdl.
. Go to the Current Directory window and double-click on the setup_ip02_spg.m file to open the setup script.

. Configure setup script: The beginning of the setup script is shown below. Ensure the script is setup to match
the configuration of your actual IPO2 device. For example, the script given below is setup for an IP02 plant with
the additional weight and long pendulum, and it is actuated using the Quanser VoltPAQ device with a gain of
1. See the IP02 User Manual [3] for more information on IP02 plant options and corresponding accessories.
Finally, make sure MODELING_TYPE is set to 'MANUAL'".

% if IP02: Type of Cart Load: set to 'NO_WEIGHT', 'WEIGHT'

% IPO2_WEIGHT_TYPE = 'NO_WEIGHT';

IPO2_WEIGHT_TYPE = 'WEIGHT';

% Type of single pendulum: set to 'LONG_24IN', 'MEDIUM_12IN'

PEND_TYPE = 'LONG_24IN';

% PEND_TYPE = 'MEDIUM_12IN';

% Turn on or off the safety watchdog on the cart position: set it to 1 , or O

X_LIM_ENABLE = 1; % safety watchdog turned ON

%X_LIM_ENABLE = 0; % safety watchdog turned OFF

% Safety Limits on the cart displacement (m)

X_MAX = 0.2; % cart displacement maximum safety position (m)

X_MIN = - X_MAX; % cart displacement minimum safety position (m)

% Turn on or off the safety watchdog on the pendulum angle: set it to 1 , or O
%ALPHA_LIM_ENABLE = 1; % safety watchdog turned ON

ALPHA_LIM_ENABLE = 0; % safety watchdog turned OFF

% Safety Limits on the pendulum angle (deg)

global ALPHA_MAX ALPHA_MIN

ALPHA_MAX = 25; % pendulum angle maximum safety position (deg)
ALPHA_MIN = - ALPHA_MAX; % pendulum angle minimum safety position (deg)
% Amplifier Gain used: set VoltPAQ to 1

K_AMP = 1;

% Amplifier Type, e.g. 'VoltPAQ', or 'Q3'

AMP_TYPE = 'VoltPAQ';

% AMP_TYPE = 'Q3';

% Digital-to-Analog Maximum Voltage (V); for MultiQ cards set to 10
VMAX_DAC = 10;

% #i#### USER-DEFINED CONTROLLER DESIGN ###it#
% Type of Controller: set it to 'PP_AUTO', 'MANUAL'

%CONTROLLER_TYPE = 'PP_AUTO'; % pole placement design: automatic mode
CONTROLLER_TYPE = 'MANUAL'; % controller design: manual mode

% Pole Placement Design Specifications

PO = 5; % spec #1: maximum percent overshoot

ts = 2.2; 7 spec #2: maximum 2% settling time

. Run the script by selecting the Debug | Run item from the menu bar or clicking on the Run button in the tool
bar.




S LAB REPORT

When you prepare your lab report, you can follow the outline given in Section 5.1 to build the content of your report.
Also, in Section 5.2 you can find some basic tips for the format of your report.

5.1 Template for Content

. PROCEDURE

I.1. Modeling Experiment

1. Briefly describe the main goal of this experiment and the procedure.

o Briefly describe the experimental procedure (Section 2.3.1), Model Analysis
o Briefly describe the experimental procedure in Step 2 in Section 2.3.1.

e Briefly describe the experimental procedure in Step 3 in Section 2.3.1.

¢ Briefly describe the experimental procedure (Section 2.3.2), Model Validation

I.2. Gantry Control Experiment

1. Briefly describe the main goal of this experiment and the procedure.

o Briefly describe the experimental procedure (Section 3.4.1), Control Design

o Briefly describe the experimental procedure in Step 1 in Section 3.4.1.

e Briefly describe the experimental procedure in Step 2 in Section 3.4.1.

o Briefly describe the experimental procedure (Section 3.4.3), Control Implementation
o Briefly describe the experimental procedure in Step 10 in Section 3.4.3.

o Briefly describe the experimental procedure in Step 12 in Section 3.4.3.

o Briefly describe the experimental procedure (Section 3.4.3), Partial-State Feedback
e Briefly describe the experimental procedure in Step 10 in Section 3.4.4.

Il. RESULTS
Do not interpret or analyze the data in this section. Just provide the results.

I.1. Modeling Experiment

1. Numeric matrices from Step 3 in Section 2.3.1, Model Analysis

2. Simulation and experimental response comparison from Step 8 in Section 2.3.2, Model Validation
I.2. Gantry Control Experiment

1. Simulated pendulum tip, and motor voltage responses from Step 2 in Section 3.4.1, Control Design
2. Pendulum and motor voltage response from Step 10 in Section 3.4.3, Control Implementation
3. Pendulum and motor voltage response from Step 10 in Section 3.4.4, Partial-State Feedback
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lll. ANALYSIS
Provide details of your calculations (methods used) for analysis for each of the following:

lll.1. Modeling Experiment

1. Step 4 in Section 2.3.1, Model Analysis.

lll.2. Gantry Control Experiment

1. Step 1 in Section 3.4.1, Control Design.
. Step 2 in Section 3.4.1, Control Design.
. Step 3 in Section 3.4.1, Control Design.
. Step 11 in Section 3.4.3, Control Implementation.

a A W DN

. Step 11 in Section 3.4.4, Partial-State Feedback.

IV. CONCLUSIONS
Interpret your results to arrive at logical conclusions.

1. Steps 8 in Section 2.3.
2. Steps 3, and 11 in Section 3.4.

5.2 Tips for Report Format

PROFESSIONAL APPEARANCE

e Has cover page with all necessary details (title, course, student name(s), etc.)

e Each of the required sections is completed (Procedure, Results, Analysis and Conclusions).
e Typed.

e All grammar/spelling correct.

e Report layout is neat.

e Does not exceed specified maximum page limit, if any.

e Pages are numbered.

e Equations are consecutively numbered.

e Figures are numbered, axes have labels, each figure has a descriptive caption.

e Tables are numbered, they include labels, each table has a descriptive caption.

e Data are presented in a useful format (graphs, numerical, table, charts, diagrams).
¢ No hand drawn sketches/diagrams.

e References are cited using correct format.
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Nine linear motion plants for teaching fundamental and advanced controls concepts

) IPO2 Base Unit » Linear Pendulum ) Linear Flexible Inverted Pendulum

, E—. 3 ¢ B -

) Double Inverted Pendulum p Linear Flexible Joint » Linear Flexible Joint with
Inverted Pendulum

- - . . c— . B g B 4

) Seesaw » Seesaw Pendulum ) Linear Flexible Joint on Seesaw

————4 —_——

Quanser’s linear collection allows you to create experiments of varying complexity — from basic to advanced. With nine
plants to choose from, students can be exposed to a wide range of topics relating to mechanical and aerospace
engineering. For more information please contact info@quanser.com
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