

Software User Manual - Python

𝑣 1.0 − 29𝑡ℎ 𝐹𝑒𝑏 2024

QBot Platform

1

© 2024 Quanser Inc., All rights reserved

For more information on the solutions Quanser Inc. offers,
please visit the web site at: http://www.quanser.com

Quanser Inc.
119 Spy Court

Markham, Ontario
L3R 5H6, Canada

info@quanser.com
Phone : 19059403575
Fax : 19059403576
printed in Markham, Ontario.

This document and the software described in it are provided subject to a license agreement. Neither
the software nor this document may be used or copied except as specified under the terms of that
license agreement. Quanser Inc. grants the following rights: a) The right to reproduce the work, to
incorporate the work into one or more collections, and to reproduce the work as incorporated in the
collections, b) to create and reproduce adaptations provided reasonable steps are taken to clearly
identify the changes that were made to the original work, c) to distribute and publicly perform the work
including as incorporated in collections, and d) to distribute and publicly perform adaptations. The
above rights may be exercised in all media and formats whether now known or hereafter devised.
These rights are granted subject to and limited by the following restrictions: a) You may not exercise
any of the rights granted to You in above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation, and b) You must keep intact all copyright
notices for the Work and provide the name Quanser Inc. for attribution. These restrictions may not be
waved without express prior written permission of Quanser Inc.

Waste Electrical and Electronic Equipment (WEEE)
This symbol indicates that waste products must be disposed of separately from
municipal household waste, according to Directive 2002/96/EC of the European
Parliament and the Council on waste electrical and electronic equipment (WEEE). All
products at the end of their life cycle must be sent to a WEEE collection and recycling
center. Proper WEEE disposal reduces the environmental impact and the risk to human
health due to potentially hazardous substances used in such equipment. Your

cooperation in proper WEEE disposal will contribute to the effective usage of natural resources.

Caution

This equipment is designed to be used for educational and research
purposes and is not intended for use by the public. The user is responsible
to ensure that the equipment will be used by technically qualified personnel
only. While the end-effector board provides connections for external user
devices, users are responsible for certifying any modifications or additions
they make to the default configuration.

http://www.quanser.com/

2

Table of Contents

Table of Contents 2

A. Overview 3

B. Development Details 4

i. Quanser Modules 4

ii. Quanser Application Libraries 5

High-Level Application Libraries (hal) 5

Python Application Libraries (pal) 5

iii. Application Modules Setup 6

iv. Driver Model 6

Send packet message: 6

Receive packet message: 7

Built in Driver LEDs: 7

C. Configure Timing 8

D. Deployment and Monitoring 10

Troubleshooting Best Practice 11

3

A. Overview

The overall process is described in Figure 1 below. Design your application as you see fit for
Python 3. The examples provided are tested with Python 3.10.4 for the Windows host PC and
Python 3.8.10 on the QBot Platform. The general development flow is described in Figure 1.
Seconds B through E cover useful information on development in python 3, configuring
timing, deploying your code to the QBot Platform, and debugging common errors. For more
details, see the corresponding sections.

Figure 1. Process diagram for Python code deployment

4

B. Development Details

Ensure that all the modules required by your application are installed in the location where
the script will be deployed. The QBot Platform comes equipped with numerous modules
already installed. On your Windows development PC, the setup installer included with your
resources (setup.bat) will automatically install python packages for you as well. Any additional
packages you require can be installed manually as you see fit using the python package
manager pip. On your computer, use the following command in a command prompt to see
what packages you currently have available after installation.
C:\...\> python -m pip list

Note that the QBot Platform has python 3 installed by default.

In a terminal on the QBot Platform (using a direct connection or PuTTY terminal if remote)
use the following command to look at pre-installed packages, See the Connectivity User
Manual for more information on using PuTTY or SSH.
nvidia@qbp-XXXXX:~$ python3 -m pip list

i. Quanser Modules

After installation your PC and the QBot Platform should also have Quanser modules installed
that are used for additional interactions with hardware, devices and stream. On your PC, these
packages are installed by the setup installer included with your resources (setup.bat):

 quanser-api 2024.x.x
 quanser-common 2024.x.x
 quanser-communications 2024.x.x
 quanser-devices 2024.x.x
 quanser-hardware 2024.x.x
 quanser-multimedia 2024.x.x

On the QBot Platform, these packages are installed via apt package manager, and updated
through it as well. To list the currently installed packages from Quanser, run the following
command,
nvidia@qbp-XXXXX:~$ apt list | grep quanser

To update QUARC runtime on the QBot, run the following commands,
nvidia@qbp-XXXXX:~$ sudo apt update

nvidia@qbp-XXXXX:~$ sudo apt upgrade

Note: The password for sudo operations is nvidia. A valid internet connection is required.
Consider connecting the QBot Platform to a Wi-Fi network with internet connectivity or use a
LAN wired connection directly.

The provided applications, teaching content and examples use these packages. To get
more information on these packages click here.

https://docs.quanser.com/quarc/documentation/python/

5

If you have manually updated your version of Quanser SDK on your machine, the python
packages must be updated as well. This can be done manually by reinstalling the new
packages located under the following directory. Use the following commands:
C:\...\> cd “C:\Program files\Quanser\Quanser SDK\python”

C:\...\> dir

Typing dir will indicate the date needed for the next command:
C:\...\> python -m pip install -–upgrade –-find-links . quanser_api-<date>-py2.py3-none-

any.whl

where <date> is the date for the API being installed. For example:
sudo python3 -m pip3 install -–upgrade –-find-links . quanser_api-2022.2.2-py2.py3-none-

any.whl

Note: You do not need the exact date. In the command above, you can type quanser_api and
hit the Tab key to automatically fill out the rest of the command. Installing quanser_api installs
the other five packages as well. The terminal window should indicate that all existing
packages were successfully uninstalled, then the new packages were installed.

ii. Quanser Application Libraries

In addition to the examples and teaching content, the QBot Platform also comes with
application libraries that are divided into two, high-level (hal) and lower level (pal).

High-Level Application Libraries (hal)

The higher-level python libraries are equipped with a list of python functions commonly used
throughout the provided examples and courseware. These hal libraries are designed to
provide a starting point for developing research and also include solutions for the teaching
content. These are not intended to be shared with students as it contains code solutions.
Student versions of hal require students to complete code as they progress through labs.

There are three sub packages inside of hal:

• products

• content

• utilities

Generic classes can be found in the utilities folder for PID control, state estimation etc. The
content directory includes qbot_platform_functions.py, which is used by the teaching
content, and holds classes related to forward and inverse differential kinematics, image
processing and lidar processing.

Python Application Libraries (pal)

The lower-level python libraries, make use of the Quanser Modules and are equipped with a
list of python functions commonly used throughout the provided examples and courseware.

6

These are intended to give users the ability to interface with the hardware on the QBot
Platform. Unlike hal however, this library is intended to be given to students as a starting
place for the provided courseware. Just like in hal, pal also contains two sub packages:

• products

• utilities

The products folder contains a class for the QBot Platform called qbot_platform.py which
is a specific implementation of the generic classes found in the utilities folder. The
qbot_platform.py file was designed to give users the ability to interact with the standard set
of sensors in the QBot Platform from a single location.

If the sensor/peripheral is not defined in the qbot_platform.py, the standard utilities can be
used for added flexibility. These additional utilities include libraries for using a gamepad, lidar,
math utilities, scoping, probing, stream, and vision.

iii. Application Modules Setup

To make use of hal and pal (or include future updates) on the QBot Platform:

1. Make a common directory on the QBot Platform where libraries will be transferred to
and from. We suggest for simplicity to put them under Documents/Quanser/ to
match where libraries are located on your PC. See the User Manual – Connectivity for
how to remotely connect to the QBot Platform and transfer files.

2. The following line has automatically been included at the end of the ~/.bashrc folder
on the QBot Platform.

export PYTHONPATH=”/home/nvidia/Documents/Quanser/libraries/python”

3. Transfer the contents of libraries from your Windows machine to the QBot, as well as
your application files using appropriate directory structures. See Section D for running.

iv. Driver Model

Along with the libraries, the QBot Platform also comes with a driver model. The driver model
has been created for safety purposes with driving the QBot Platform. We strongly encourage
all user applications to go through the driver model for safety purposes. There are several
different inputs that get sent to driver model.

Send packet message:

The message format to the drive application includes the following data structure. Use a
stream client at 60Hz connected to the server running on the following URL:
tcpip://IP_ADDRESS_OF_QBOT:18888. The packet structure contains 10 doubles:

7

Function

Doubles
(float64) Details

Mode 1 0 or 1 (teaching mode) | 2 or 3 (research mode) (see Vel Cmd)
Enable User LED 1 Enable color override
User LED color 3 Color value
Arm 1 Arm the motors
Hold 1 Not implemented yet
Vel Cmd 2 Forward/turn speed (mode 0 or 2) (m/s, rad/s)

left/right wheel speeds (mode 1 or 3) (rad/s, rad/s)
Timestamp 1 Timestamp signal for loopback

Receive packet message:

The QBot Platform driver also returns a 17 double data packet with useful information. This is
summarized below. Use the same stream client to receive this data at 60Hz.

Function

Doubles
(float64) Details

Wheel position 2 Wheel encoder positions (in rads)
Wheel speeds 2 Wheel tachometer speeds (in rad/s)
Cmd Voltage 2 Voltage commanded by onboard controllers (in Volts)
Accelerometer 3 Tri-axis Accelerometer data (m/s/s)
Gyroscope 3 Tri-axis Gyroscope data (rad/s)
Current 2 Left/right motor current draw from the battery (Amps)
Battery level 1 Active battery level (Volts)
Watchdog
status

1 Status information regarding watchdog expiry. If expired, re-
arm the QBot Platform to resume function.

Timestamp 1 Loopback timestamp signal returned by the driver

Built in Driver LEDs:

The driver and QBot Platform also have some LED colors built in to let you know when the
QBot Platform is in different states.

Running the driver model will initially change the QBot Platform lights to pulse on and off
white. This shows that your driver model is running, and you can now run your own application
to connect to the driver model. If you connect a model to the robot, the lights will turn blue.
This shows that the driver application is connected to a client and waiting for commands (but
the robot is not yet armed). Arming the robot in this state will cause the lights to turn green,
Setting the hold command to 1 in this state will cause the lights to flash warning you that this
feature is not yet implemented in the driver.

You can override the blue, green or white pulse colors with your own input by setting the
color variable to a RGB color of choice and setting the Enable User LED command to 1.

If your battery is too low, the lights will pulse purple to let you know you need to charge your
robot. If your lights pulse yellow, it means you've caused a stall or overcurrent condition.
Simply disarm and rearm the robot to continue.

8

Finally, if your robots’ lights are red or flashing red, these states are set by the firmware on
the robot. Solid red lights show the robot is on, or the application has stopped normally
without any error conditions. Red flashing lights show that the embedded computer has shut
down and the robot must be power cycled to work again.

Color State Level Description
White Pulse Model Driver application is healthy and waiting for an incoming

client connection
Blue Solid Model Driver application is connected to a client and waiting for

commands (the robot is not armed).
Green Solid Model Driver application has armed the robot and motor

controllers are active.
Green Pulse Model Driver application has armed the robot and has received the

hold command (not implemented).
Other

N/A Model Driver application is applying a user LED color.

Yellow Pulse Model Motor overcurrent or stall being detected (this is not an error
but indicates strain)

Magenta Pulse Model Low battery warning (this is not an error but indicates that
you should stop the model soon and change the batteries).

Red Solid Firmware Driver application was stopped normally without any error
conditions, or no application has been deployed yet.

Red Pulse Firmware Embedded Computer has shut down and the robot must be
turned OFF using the power switch.

C. Configure Timing

It is important to maintain a consistent sample rate for real-time applications. Given a sample
time, all code in a single iteration must be executed in a time window that is less than the
required sample time. In cases where the execution of an iteration is completed in less than
the sample time, it is also essential that the next iteration not begun until a full unit of the
sample time has elapsed.

For example, consider an image analysis task that must be executed at 60 Hz, corresponding
to a ‘sample time’ of 16.7 ms (1/60). If the time taken to execute the analysis code, also
referred to as the ‘computation time’, is less than the sample time, say 10 ms, then it is
important to wait an additional 6.7ms at each time step before proceeding to the next
iteration. On the other hand, if the computation time is greater than the sample time, say 20ms,
then the sample time cannot be met. In such cases it may be essential to lower the sample
rate or increase the sample time, to say 40Hz or 25 ms. Note that the time module’s time()
method returns the current hardware clock’s timestamp in seconds.

In Python, the code is executed as fast as possible, and a wait can be inserted using the time
module’s sleep() method or the opencv module’s waitkey() method for imaging applications.

 The following snippet provides a detailed example on how to accomplish this.

9

import time

Define the timestamp of the hardware clock at this instant
startTime = time.time()

Define a method that returns the time elapsed since startTime was defined
def elapsed_time():
 return time.time() - startTime

Define sample time starting from the rate
sampleRate = 100 # Hertz
sampleTime = 1/sampleRate # Seconds

Total time to execute this application in seconds.
simulationTime = 5.0

Refresh the startTime to ensure you start counting just before the main loop
startTime = time.time()

Execute main loop until the elapsed_time has crossed simulationTime
while elapsed_time < simulationTime:
 # Measured the current timestamp
 start = elapsed_time()

 # All your code goes here ...

 # Measure the last timestamp
 end = elapsed_time()

 # Calculate the computation time of your code per iteration
 computationTime = end - start

 # If the computationTime is greater than or equal
 # to sampleTime, proceed onto next step
 if computationTime < sampleTime:
 # sleep for the remaining time left in this iteration
 time.sleep(sampleTime - computationTime)

10

D. Deployment and Monitoring

When developing code for the QBot Platform there are two main methods:

• Using a personal computer (PC) or a Quanser Ground Control Station (GCS) to
develop code, and moving files to the QBot for testing and execution.

• Writing code directly on the QBot Platform.

We recommend that you choose the former so that you run your code on Quanser
Interactive Labs first to test for bugs, before proceeding to running the code on hardware.
However, to run python code on the QBot Platform the two methods stated above are both
valid.

When ready to run python code:

1. The QBot Platform has python3 installed. All the examples available will require the
use of python3.

2. All examples provided also require you to first start the driver model before starting
the application. To run the driver model on the physical hardware, right-click on the
driver file in your directory, click on ‘show more options’, followed by ‘Run on target’.
Use the following settings and hit Run.

3. To run an application in the terminal on the physical QBot Platoform, use the following
syntax:

sudo PYTHONPATH=$PYTHONPATH python3 <application name>.py

As an example, to run the QBot Platform forward kinematics lab file:
sudo PYTHONPATH=$PYTHONPATH python3 forward_kinematics.py

11

Troubleshooting Best Practice

To ease debugging during application development, we use the try/except/finally
structure or the with function to catch exceptions that otherwise terminate the application
unexpectedly. Most of our methods in the Quanser library have this structure built in. After
configuration and initialization, scripts begin with try. If an unexpected error arises, it will be
captured by the except section instead. This can ensure that code in the finally section still
gets executed and the application ends gracefully. The with function is like the
try/catch/finally but simplifies the code when possible. For example, if you specify an
incorrect channel number for HIL I/O, a HILError will be raised, which can be appropriately
handled.

Main Loop

try:

 while elapsed_time() < simulationTime:

 # Start timing this iteration

 start = time.time()

 # Basic IO - write motor commands

 # Your code goes here

 # End timing this iteration

 end = time.time()

 # Calculate computation time, and the time that the thread should pause/sleep for

 computation_time = end - start

 sleep_time = sampleTime - computation_time%sampleTime

 # Pause/sleep and print out the current timestamp

 time.sleep(sleep_time)

 counter += 1

except KeyboardInterrupt:

 print("User interrupted!")

finally:

 myQBot.terminate()

12

© Quanser Inc., All rights reserved.

Solutions for teaching and research. Made in Canada.

