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1 INTRODUCTION
The challenge of this experiment is to design a feedback controller that dampens out the swinging of a single pen-
dulum load suspended from a two degree of freedom (2 DOF) joint.

The 2 DOF Gantry setup is based on the 2 DOF Robot configuration. For more information on the 2 DOF Robot,
see the 2 DOF Robot User Manual [7]. The 2 DOF joint module attaches underneath the end-effector of the four-bar
linkage system. The module consists of an instrumented 2 DOF joint to which a 12-inch rod is mounted and free to
swing about two orthogonal axes. The controller must reduce the swinging of the load when it is disturbed or when
the 2 DOF robot is commanded to move the load in its workspace.

A few real-world applications of the gantry problem include, for example, a crane lifting and moving a heavy payload,
or a pick-and-place gantry robot of an assembly line

The laboratory objective is to design two independent state-feedback controllers, using LQR, for the two actuated
rotary joints which should reduce the swinging of the load (pendulum) attached to the 2 DOF joint.

Topics Covered

• Obtain a state-space representation of the open-loop system.

• Design and tune an LQR-based state-feedback controller satisfying the closed-loop system's desired design
specifications.

• Simulate the system and ensure it meets the given specifications.

• Implement your state-feedback controller on the 2 DOF Gantry system and evaluate its actual performance.

• Examine the disturbance response of the stabilized suspended-pendulum-robot system, in response to a tap
to the pendulum.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. See the system requirements in Section 4 for the required hardware and software.

2. Modeling and state-space representation.

3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.

4. Basics of Simulinkr.

5. QUARC Integration lab detailed in Appendix A in the SRV02 Workbook [5].
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2 BACKGROUND
The 2 DOF Gantry is modeled as two de-coupled rotary gantry systems. The linearized model is then used with the
Linear-Quadratic Regular (LQR) technique to design the feedback gain.

2.1 Modeling

If the end-effector does not deviate greatly from the zero or home position, we assume that the coupling between the
two axes is low. With this assumption, the system is modeled as two 1 DOF rotary gantry systems where the x-axis
servo controls the gantry angle in the x direction and the y-axis servo controls the gantry angle in the y direction.
This section will summarize how to model a single rotary gantry system.

2.1.1 Model Convention

The rotary pendulum model is shown in Figure 2.1. The rotary arm pivot is attached to the SRV02 system and is
actuated. The arm has a length of Lr, a moment of inertia of Jr, and its angle, θ, increases positively when it rotates
counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control voltage
is positive, i.e., Vm > 0.

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center of mass is Lp

2 .
The moment of inertia about its center of mass is Jp. The inverted pendulum angle, α, is zero when it is perfectly
upright in the vertical position and increases positively when rotated CCW.

2 DOF Gantry HOME Position
Recall from the 2 DOF Robot User Manual [7] that the home position of the 2 DOF Robot is represented by the
schematic illustrated in Figure 2.2. This is defined when both both actuated servo joints are zero, i.e., θx = 0 and θy
= 0. In the home position, the 2-DOF Gantry is assumed to be suspended underneath the end-effector at point E
and motionless. Thus the angle of both orthogonal gantry joints are defined αx = 0 and αy = 0.

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the rotary arm and the pendulum with respect to the
servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi

The variables qi are called generalized coordinates. For this system let

q(t)⊤ = [θ(t) α(t)] (2.1)

where, as shown in Figure 2.1, θ(t) is the rotary arm angle and α(t) is the inverted pendulum angle. The corre-
sponding velocities are

q̇(t)⊤ =

[
∂θ(t)

∂t

∂α(t)

∂t

]

Note: The dot convention for the time derivative will be used throughout this document, i.e., θ̇ = dθ
dt . The time

variable t will also be dropped from θ and α, i.e., θ = θ(t) and α = α(t).
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Figure 2.1: Rotary gantry conventions

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1

∂2L

∂t∂α̇
− ∂L

∂α
= Q2

The Lagrangian of the system is described
L = T − V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the rotary arm is

Q1 = τ −Dr θ̇

and acting on the pendulum is
Q2 = −Dpα̇.

See [3] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km). Our
control variable is the input servo motor voltage, Vm. Opposing the applied torque is the viscous friction torque, or
viscous damping, corresponding to the term Dr. Since the pendulum is not actuated, the only force acting on the
link is the damping. The viscous damping coefficient of the pendulum is denoted by Dp.
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Figure 2.2: 2 DOF Robot HOME Position.

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the SRV02
rotary pendulum are:(

mpL
2
r +

1

4
mpL

2
p −

1

4
mpL

2
p cos(α)2 + Jr

)
θ̈ −

(
1

2
mpLpLr cos(α)

)
α̈

+

(
1

2
mpL

2
p sin(α) cos(α)

)
θ̇α̇+

(
1

2
mpLpLr sin(α)

)
α̇2 = τ −Dr θ̇ (2.2)

1

2
mpLpLr cos(α)θ̈ +

(
Jp +

1

4
mpL

2
p

)
α̈− 1

4
mpL

2
p cos(α) sin(α)θ̇2

+
1

2
mpLpg sin(α) = −Dpα̇. (2.3)

The torque applied at the base of the rotary arm (i.e., at the load gear) is generated by the servo motor as described
by the equation

τ =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm
. (2.4)

See [3] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km).

Both the equations match the typical form of an EOM for a single body:

Jẍ+ bẋ+ g(x) = τ1

where x is an angular position, J is the moment of inertia, b is the damping, g(x) is the gravitational function, and τ1
is the applied torque (scalar value).

For a generalized coordinate vector q, this can be generalized into the matrix form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.5)

where D is the inertial matrix, C is the damping matrix, g(q) is the gravitational vector, and τ is the applied torque
vector.

The nonlinear equations of motion given in 2.2 and 2.3 can be placed into this matrix format.
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2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

z⊤ = [z1 z2]

and f(z) is to be linearized about the operating point

z0
⊤ = [a b]

The linearized function is

flin = f(z0) +

(
∂f(z)

∂z1

) ∣∣∣∣
z=z0

(z1 − a) +

(
∂f(z)

∂z2

) ∣∣∣∣
z=z0

(z2 − b)

2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.6)

and
y = Cx+Du (2.7)

where x is the state, u is the control input, A, B, C, andD are state-space matrices. For the rotary pendulum system,
the state and output are defined

x⊤ = [θ α θ̇ α̇] (2.8)
and

y⊤ = [x1 x2]. (2.9)

After linearizing the nonlinear equations of motion given in equations 2.2 and 2.3, solving for the acceleration terms
θ̈ and ¨alpha, and substituting the state given in , we obtain the following state-space matrices:

A =
1

JT


0 0 1 0
0 0 1
0 1

4m
2
pL

2
pLrg −

(
Jp +

1
4mpL

2
p

)
Dr

1
2mpLpLrDp

0 − 1
2mpLpg

(
Jr +mpL

2
r

)
1
2mpLpLrDr −

(
Jr +mpL

2
r

)
Dp


and

B =
1

JT


0
0

Jp +
1
4mpL

2
p

− 1
2mpLpLr

 .

In the output equation, only the position of the servo and link angles are being measured. Based on this, the C and
D matrices in the output equation are

C =

[
1 0 0 0
0 1 0 0

]
(2.10)

and
D =

[
0
0

]
. (2.11)

The 2 DOF Gantry does not have a rotary arm as described in Figure 2.1, it has a four-bar linkage. Thus the length
of the 'arm' in terms of the link length Lb is defined as

Lr =
√
L2
b + L2

b =
√
2Lb.

The velocities of the servo and pendulum angles can be computed in the digital controller, e.g., by taking the deriva-
tive and filtering the result though a high-pass filter.
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2.2 Control

In Section 2.1, we found a linear state-state space model that represents a single rotary gantry system. This model is
used to investigate the stability properties of the system in Section 2.2.2. In Section 2.2.3, the notion of controllability
is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the control gain and
is discussed in Section 2.2.4. Lastly, Section 2.2.5 describes the state-feedback control used to control the servo
position while minimizing link deflection.

2.2.1 Specifications

For our application, the suspended pendulum response performance can be assessed in terms of speed of response,
minimum oscillation, and position accuracy. The time-domain specifications for both the servo and pendulum in the
X- and Y-axes are:

Specification 1: Servo angle settling time: ts <= 1.5 s.

Specification 2: Servo angle percentage overshoot: PO <= 7.5 %.

Specification 3: Servo angle steady-state error: ess <= 0.5 deg.

Specification 4: Maximum pendulum angle deflection: |α|max <= 5 deg.

Specification 5: Maximum control effort / voltage: |Vm| <= 15 V.

Thus when tracking a given reference, the response from the X and Y servo should have a settling time less than or
equal to 1.5 seconds, an overshoot less than or equal to 7.5 %, and the steady-state response should have less then
0.5 degree error. The pendulum, in both the X and Y axes, must be kept within ±5 degrees. Finally, the controller
must not surpass the limits of the SRV02 motors and amplifiers.

2.2.2 Stability

The stability of a system can be determined from its poles ([8]):

• Stable systems have poles only in the left-hand plane.

• Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

• Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of
the system can be found using

det (sI −A) = 0 (2.12)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.3 Controllability

If the control input, u, of a system can take each state variable, xi where i = 1 . . . n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([8]).

Rank Test The system is controllable if the rank of its controllability matrix

T =
[
B AB A2B . . . AnB

]
(2.13)
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equals the number of states in the system,
rank(T ) = n. (2.14)

2.2.4 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.6, find a control input u that minimizes the cost function

J =

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) dt, (2.15)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law u = −Kx, the state-space in Equation 2.6 becomes

ẋ = Ax+B(−Kx)

= (A−BK)x

2.2.5 Feedback Control

The feedback control loop that in Figure 2.3 is designed to stabilize the servo to a desired position, θd, while mini-
mizing the deflection of the pendulum.

The reference state is defined
xd = [θd 0 0 0] (2.16)

and the controller is
u = K(xd − x). (2.17)

Note that if xd = 0 then u = −Kx, which is the control used in the LQR algorithm.

Figure 2.3: State-feedback control loop
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3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the Simulink diagram shown in Figure 3.1 to simulate the closed-loop control of the 1 DOF
Rotary Gantry system. Recall in Section 2.1 the 2 DOF Gantry is modeled as two independent and identical gantry
systems. We will only be examining the 1 DOF portion. The Rotary Gantry is simulated using a nonlinear model (it
represents the actual system better than a linear model).

The Simulink model uses the state-feedback control described in Section 2.2.5. You can switch between full-state
and partial-state feedback. In partial state-feedback, the user can examine how the system behaves when you
cannot compensate for the swinging motions of the gantry. The feedback gain K is found using the Matlab LQR
command (LQR is described briefly in Section 2.2.4). The goal is to find a gain that will satisfy the specifications
given in Section 2.2.1.

Figure 3.1: Simulink model used to simulate 1 DOF Rotary Gantry.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the rotary gantry:

1. Make sure the LQR weighting matrices in setup 2d gantry.m are to

Q =


250 0 0 0
0 0 0 0
0 0 5 0
0 0 0 10


and R = 1.

2. Run the script to generate the gain

K =
[
15.8 −17.7 3.64 0.0080

]
.
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Remark: When tuning the LQR, Q(1, 1) effects the servo proportional gain while Q(3, 3) effects the servo
derivative gain (which reduces the overshoot). Increasing Q(4, 4) attenuates the motions of the pendulum.

3. To generate a 0.1 Hz square wave reference, ensure the Signal Generator is set to the following:

• Signal type = square
• Amplitude = 1
• Frequency = 0.1 Hz

4. Set the Amplitude (deg) gain blocks to 10 to generate a step with an amplitude of 10 degrees (i.e., square wave
goes between ±10 which results in a step amplitude of 20).

5. Open the servo gear position scope, theta l (rad), the pendulum angle scope, alpha (deg), and the motor input
voltage scope, Vm (V).

6. To simulate full-state feedback (FSF), set the Manual Switch to the Full-State Feedback.

7. Start the simulation. By default, the simulation runs for 15 seconds. The scopes should be displaying re-
sponses similar to Figure 3.2. Note that in the theta l (rad) scopes, the yellow trace is the setpoint position
while the purple trace is the simulated position.

(a) SRV02 Angle (b) Pendulum Angle (c) Voltage

Figure 3.2: Simulated closed-loop response.

3.1.2 Full-State Feedback Analysis

The full-state feedback response is shown in Figure 3.3. You can generate this figure by running theplot response 2d gantry sim.m
script.

From the response shown in Figure 3.3, it is clear that the steady-state error is zero, thus

ess = 0

The settling time, percent overshoot, and maximum deflection of the response are

ts = 1.14 sec
PO = 4.4 %.

|α|max = 4.42 deg
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Figure 3.3: Simulated 1 DOF Gantry full-state feedback response.

The simulated response satisfies the specifications given in Section 2.2.1 while maintaining amotor input voltage less
than 15 V, i.e., themotor is not saturated. The specifications are automatically foundwhen the plot response 2d gantry sim.m
script is ran.

Generating the Matlab figure: After each simulation run, each scope automatically saves their response to a
variable in the Matlabrworkspace. The theta (deg) scope saves its response to the variable called data theta, the
alpha (deg) scope saves its data to the data alpha variable, and the Vm (V) scope saves its plot to the data vm
variable. See the plot response 2d gantry sim.m script to see how they are used for plotting.

3.1.3 Partial-State Feedback Analysis

Using the same gain K, run the simulation when the Manual Switch is set to Partial-State Feedback mode. After
running plot response 2d gantry sim.m script you obtain the response shown in Figure 3.4.

Figure 3.4: Simulated 1 DOF Gantry partial-state feedback response.
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As shown the pendulum (i.e., crane) tends to oscillate much more as the servo rotates to track its desired position.
The servo response is also slowed down. The steady-state error, settling time, percent overshoot, and maximum
deflection of the simulated partial-state feedback response are

ess = 0.21 deg
ts = 2.7 sec

PO = 0 %.
|α|max = 8.0 deg

3.2 Implementation

The q 2d gantry Simulink diagram shown in Figure 3.5 is used to perform the gantry control on the 2 DOF Gantry.
The 2 DOF Gantry subsystem contains QUARCrblocks that interface with the DC motor and sensors of the 2 DOF
Gantry system.

Figure 3.5: Simulink model used with QUARCrto run controller on the 2 DOF Gantry.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:

1. Run the setup 2d gantry.m script using the LQR weighting matrices that you used in the simulation in Section
3.1.

2. To generate a step reference, go to the Setpoint subsystem ensure the each Signal Generator is set to the
following:

• Signal type = square
• Amplitude = 1
• Frequency = 0.5 Hz
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3. In the Setpoint subsystem, set both Amplitude (deg) gain blocks to 10 to generate a step with an amplitude of
10 degrees (i.e., square wave goes between ±10 which results in a step amplitude of 20).

4. Open the load shaft position scope, theta l (rad), and the motor input voltage scope, Vm (V).

5. Open the servo X gear position scope, theta x (rad), the pendulum X angle scope, alpha x (deg), servo Y gear
position scope, theta y (rad), the pendulum Y angle scope, alpha y (deg), and the motor input voltage scope,
Vm (V).

6. In the Simulink diagram, go to QUARC | Build.

7. Make sure the system is in the HOME position, as shown in Section 2.1.1 (see [7] for more information).

8. Click on QUARC | Start to run the controller. The servos should beging rotation back-and-forth and the gantry
should be moving in a square-like fashion. The scopes should be displaying responses similar to Figure 3.6.
Note that in the theta x (deg) and theta y (deg) scopes, the yellow trace is the setpoint position while the purple
trace is the measured position.

(a) SRV02 X Angle (b) SRV02 Y Angle

(c) Pendulum X Angle (d) Pendulum Y Angle (e) Voltage

Figure 3.6: Typical response when running control on 2 DOF Gantrysystem

3.2.2 Full-State Feedback Analysis

The closed-loop position response is shown in Figure 3.7. You can generate this using the plot response 2d gantry.m
script.

For the x-axis shown in Figure 3.7, the steady-state error, settling time, percentage overshoot, and maximum pen-

2 DOF GANTRY Laboratory Guide v 1.0



(a) X-Axis (b) Y-Axis

Figure 3.7: 2 DOF Gantry full-state feedback response

dulum deflection are:

ess = 0.51 deg,
ts = 0.68 sec,

PO = 0%, and
|α|max = 3.1 deg

For the y-axis the measured specifications are:

ess = −0.020 deg,
ts = 0.82 sec,

PO = 2.3%, and
|α|max = 3.5 deg.

For the most part, the specifications given in Section 2.2.1 are satisfied for both axes while maintaining a motor input
voltage less than 15 V, i.e., the motor is not saturated. The steady-state error of the x-axis marginally exceeds the
limit. With further tuning of the LQR, this could be improved. The specifications are automatically found using when
the plot response 2d gantry.m script is ran.

3.2.3 Partial-State Feedback Analysis

With the same gainK, run the q 2d gantry controller when theManual Switch is set to Partial-State Feedback mode.
After running plot response 2d gantry.m script you obtain the response shown in Figure 3.8.

As in the simulation, the pendulum tends to swing more as the servos track their desired angles. The specifications
measured on the partial-state feedback response captured in Figure 3.8 for the x-axis are:

ess = 0.51 deg,
ts = 2.14 sec,

PO = 0%, and
|α|max = 5 deg
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(a) X-Axis (b) Y-Axis

Figure 3.8: 2 DOF Gantry partial-state feedback response

and for the y-axis:

ess = 0.68 deg,
ts = 3.34 sec,

PO = 0%, and
|α|max = 6.3 deg.

The settling time on both servos has increased, i.e., servo response has slowed down, and no longer satisfies the
specifications given in Section 2.2.1. The pendulum swing along the y-axis exceed the specification as well.
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4 SYSTEM REQUIREMENTS
Required Software

• Microsoft Visual Studio (MS VS)

• Matlabr with Simulinkr, Real-Time Workshop, and the Control System Toolbox

• QUARCr

See the QUARCrsoftware compatibility chart in [4] to see what versions of MS VS and Matlab are compatible with
your version of QUARC and for what OS.

Required Hardware

• Data acquisition (DAQ) device with four encoder inputs and that is compatible with QUARCr. This includes
Quanser DAQ boards such as Q8-USB, QPID, and QPIDe and some National Instruments DAQ devices. For
a full listing of compliant DAQ cards, see Reference [1].

• 2x Quanser SRV02-ET rotary servos.

• Quanser 2 DOF Robot (four bar linkage attached to the SRV02 units).

• Quanser SRV02 2 DOF Gantry (attached to end-effector on 2 DOF Robot).

• Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

• QUARCris installed on your PC, as described in [2].

• DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the QUARC
Analog Loopback Demo).

• SRV02 2 DOF Gantry and amplifier are connected to your DAQ board as described its User Manual [6].
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4.1 Overview of Files

File Name Description
2 DOF Gantry User Manual.pdf This manual describes the hardware of the 2 DOF Gantry

system and explains how to setup and wire the system for
the experiments.

2 DOF Gantry Laboratory Guide.pdf This document demonstrates how to obtain the linear
state-space model of the system, simulate the closed-loop
system, and implement controllers on the 2 DOF Gantry
plant using QUARCr.

setup 2d gantry.m The main Matlab script that sets the SRV02 motor and
sensor parameters, the SRV02 configuration-dependent
model parameters, and the 2 DOF Gantry sensor param-
eters. Run this file only to setup the laboratory.

config srv02.m Returns the configuration-based SRV02 model specifica-
tions Rm, kt, km, Kg, eta g, Beq, Jeq, and eta m, the
sensor calibration constants K POT, K ENC, and K TACH,
and the amplifier limits VMAX AMP and IMAX AMP.

config 2d robot.m Returns the 2 DOF Robot related model parameters.
config 2d gantry.m Returns the 2 DOF Gantry related model parameters.
calc conversion constants.m Returns various conversions factors.
s rotary gantry.mdl Simulink file that simulates the closed-loop control of a Ro-

tary Gantry system using state-feedback control.
q 2d gantry.mdl Simulink file that implements the state-feedback control on

the 2 DOF Gantry system using QUARCr.
2d robot.mws Maple worksheet used to develop the model for the 2 DOF

Gantry experiment. Waterloo Maple 9, or a later release,
is required to open, modify, and execute this file.

2d robot.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 9 installed. No modifications to the equations
can be performed when in this format.

plot response 2d gantry sim.m Plots the response found in the variables data theta,
data alpha, and data vm in the Matlab workspace and
measures the corresponding peak time, settling time, per-
cent overshoot, and steady-state error. These variables
are saved from the Simulink diagrams s rotary gantry.mdl.

plot response 2d gantry.m Plots the response found in the variables data theta x,
data theta y, data alpha x, data alpha y, and data vm in
the Matlab workspace and measures the corresponding
peak time, settling time, percent overshoot, and steady-
state error. These variables are saved from the Simulink
diagrams q 2d gantry.mdl.

meas step rsp specs.m Function that measures the peak time, settling time,
steady-state error, and percent overshoot of a given step
response.

Table 4.1: Files supplied with the 2 DOF Gantry

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the s rotary gantry Simulink diagram and the setup 2d gantry.m
script must be configured.
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Follow these steps:

1. Load the Matlab software.

2. Browse through theCurrent Directory window inMatlab and find the folder that contains the file setup 2d gantry.m.

3. Open the setup 2d gantry.m script.

4. Configure setup 2d gantry.m script: When used with the 2 DOF Gantry, the SRV02 has no load (i.e., no
disc or bar) and has to be in the high-gear configuration. Make sure the script is setup to match this setup:

• EXT GEAR CONFIG to 'HIGH'
• LOAD TYPE to 'NONE'
• K AMP to 1 (unless your amplifier gain is different)
• AMP TYPE to your amplifier type (e.g., VoltPAQ).
• Ensure other parameters such as ENCODER TYPE, TACH OPTION, and VMAX DAC match your sys-
tem configuration.

5. Run setup 2d gantry.m to setup the Matlab workspace.

6. Open the s rotary gantry.mdl Simulink diagram, shown in Figure 3.1.

4.3 Setup for Running on 2 DOF Gantry

Before performing the in-lab exercises in Section 3.2, the q 2d gantry Simulink diagram and the setup 2d gantry.m
script must be configured.

Follow these steps to get the system ready for this lab:

1. Setup the SRV02 with the 2 DOF Gantry module as detailed in the 2 DOF Gantry User Manual [6].

2. Make sure the 2 DOF Gantry is in the HOME position, as depicted in Section 2.1.1. For more information
about the HOME position, go to the 2 DOF Gantry User Manual.

3. Configure and run setup 2d gantry.m as explained in Section 4.2.

4. Open the q 2d gantry.mdl Simulink diagram, shown in Figure 3.5.

5. Configure DAQ: Ensure the HIL Initialize block in the 2 DOF Gantry subsystem is configured for the DAQ
device that is installed in your system. See Reference [1] for more information on configuring the HIL Initialize
block.
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