
EXPERIMENT 3: MANIPULATOR
JACOBIAN

The purpose of this experiment is to study the relationship between the linear and angular velocity of the end-
effector of a robot, and the velocity of the individual joints of a robot arm. The following topics will be studied in this
experiment.

Topics Covered
• Linear and angular velocities of rigid bodies

• The notion of Jacobian

• Singularities

• Static forces and Jacobian

Prerequisites
• The robot has been setup and tested. See the Quick Start Guide for details.

• You have access to the User Manual.

• You are familiar with the basics of M r and S r.

Figure 0.1: Manipulator Jacobian is used to determine the end-effector speed or forces (Cartesian Space) of the
robot arm given individual joint speeds or torques (Joint Space).
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1 Pre-Lab Preparations
1.1 Background
In this experiment, we study the linear and angular velocity of manipulators as well as the static forces and moments
acting on manipulators. Both of these topics are closely related to a property of manipulators called Jacobian or
Velocity Kinematics.

1.1.1 Linear and Angular Velocity

The linear and angular velocity of a rigid body can be achieved by differentiating position vectors. We use the
following notation for the derivative of Q relative to frame B, expressed in frame B.

BVQ =
d

dt
BQ = lim

∆t→0

BQ(t+∆t)− BQ(t)

∆t
(1.1)

To describe this velocity vector in frame A, we can write

A(BVQ) =
A
BR

BVQ. (1.2)

If the origin of frame B is also linearly moving relative to frame A, we have

AVQ =A VBorig +
A
BR

BVQ. (1.3)

While linear velocity describes an attribute of a point in space, angular velocity describes an attribute of a rigid body
(to which a frame is attached). Therefore, the angular velocity vector describes the rotational motion of a frame.

A notation similar to linear velocity is defined for angular velocity. Here C(AΩB) indicates the rotation of frame B
relative to frame A described in frame C.

Now, if the frame B rotates with the rotational velocity AΩB relative to frame A, the motion of this vector as viewed
in Frame A can be written as follows

AVQ =A VBorig +
A
BR

BVQ + AΩB × A
BR

BQ (1.4)

1.1.2 Velocity Propagation for Serial Link Manipulators and
Manipulator Jacobian

The following equations can be used to propagate the linear and angular velocities for revolute-joint manipulators.

i+1ωi+1 =i+1
i R iωi (1.5)

i+1vi+1 = i+1
i R (ivi +

i ωi ×i Pi+1) (1.6)

Applying these equations successively from link to link, we can compute the linear and angular velocity of the end-
effector frame with respect to the base frame. These equations can be written in a compact matrix format that relates
the linear and angular velocities of the end-effector in Cartesian space to the joint angles of the robot arm

Ẋ =

v
ω

 = Jq̇ (1.7)
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where v is the linear velocity of the end-effector frame, w is the angular velocity of the end-effector frame, q̇ is the
vector of the joint angles and matrix J is called the Jacobian matrix and can be written as follows (for revolute joint
manipulators)

J =
[
J1 ... JN

]
, Ji = J =

Jvi
Jωi

 , Jvi = zi−1 × (On −Oi−1), Jωi = zi−1 (1.8)

where Oj is the centre of frame j and zi is the joint axis related to frame i.

Alternatively, in order to achieve the linear velocity components of the Jacobian, Jvi, we can calculate the partial
derivative of the position vector of the end-effector of the robot with respect to the joint angles. The angular velocity
component of the Jacobian is simply zi−1.

1.1.3 Static Forces

The Jacobian matrix J also relates the forces and moments that a manipulator exerts at its end-effector, F , to the
corresponding torques required at the joints, τ , as shown below.

τ = JTF (1.9)

This theorem can be proved using the principle of virtual work.

1.1.4 Manipulator Singularities

As discussed, the Jacobian matrix J defines a mapping between the joint velocities (q̇) and the end-effector velocities
Ẋ, which is a function of the arm pose determined by joint angles q. The Jacobian defines the linear transformation
dX = Jdq between the differentials or infinitesimal motions. To achieve a desired motion for the end-effector, the
inverse solution is required. However, in some configurations, the rank of matrix J decreases; such configurations
are called singularities. Therefore, singularities represent configurations or poses from which certain directions in
the space may be unattainable by the robot arm.

At singularities, bounded end-effector velocities may correspond to unbounded or infinite joint velocities. Similarly, at
singularities, bounded end-effector forces and torques may correspond to unbounded or infinite joint torques. These
solutions result in undesired and unsafe motion of the robot.

1.2 Pre-Lab Exercise
1. Discuss the procedure you would follow to derive the Jacobian of the 4DOF MICO robot. Derive Jωi for i = 1

and 2 at DH home (where all joint angles are zero).
Note: you are not required to go through matrix calculations for the rest of the Jacobian matrix.

2. Write a MATLAB function to receive a transformation matrix of a tool and the joint angle and calculate the
Jacobian matrix. What is the Jacobian matrix at zero DH when there is no tool attached?
Hint: you can use the available DH() function in your code to derive i−1

i T and multiply these matrices to derive
0
iT .

3. Describe different possibilities for singularity of the 4DOF MICO arm. What would happen in case of
singularities?
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2 In-Lab Exercise
2.1 Simulation
The QUARC model for this exercise is ”MICO_Jacobian_Simulation.mdl” a snapshot of which shown in Figure 2.1.

Figure 2.1: Snapshot of the controller model ”MICO_Jacobian_Simulation.mdl”

Make sure that the slider gains for x_dot, y_dot, z_dot and q4_dot inputs are set to zero and the initial pose is set
to [0 0 0 0]. Compile and run the model. The Quanser 3D Viewer should open, showing a visualization of the robot.
Go through the following steps and answer the corresponding questions.

1. What is the Jacobian matrix at DH zero? Compare this with the output of your function in the Pre-lab section.

2. What is the meaning of the last column of the J matrix? Discuss it using the virtual robot motion and
configuration.

3. Stop the model and change the initial pose to [0 −π/2 0 0]. Run the model again. Now slowly change the
x_dot input command to +0.01 using the slider gain. What do you observe? Do the same thing with the y_dot
and z_dot commands and discuss your observations.

4. Describe the model. In particular describe how the joint position commands are generated from the x_dot
commands.

5. Using the Jacobian when the joint angles are q0 = [0,−π/2, 0, 0], what would be the required torque be for
the four joints of the robot to apply -5N at its end-effector along the z axis (with no moments)? Discuss your
results.

Once you feel comfortable with the above exercises using the virtual robot, go to the next section.

2.2 Experiment
TheQUARCmodel for this exercise is ”MICO_Jacobian_Experiment.mdl” the snapshot of which shown in Figure 2.2.
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Figure 2.2: Snapshot of the controller model ”MICO_Jacobian_Experiment.mdl”

Turn off the robot and manually pose it to roughly q = [0, −π/2, 0 , 0] as was studied in the simulation section. Turn
on the robot. Also make sure that the slider gains for the x_dot, y_dot, z_dot and q4_dot inputs are set to zero.
Compile and run the robot, and it will go to the home pose q = [0, -π/2, 0 , 0].

Caution

Be sure to set the Ports in the 4-DOF MICO I/O block to the correct ports for your
serial card. For more information, refer to the User Manual.

1. What is the Jacobian matrix of the robot in this pose? Compare it with the values from your Pre-lab and the
simulation section. Explain your observations.

2. Change the x_dot command to 0.01 (1 cm/sec) by clicking and changing the corresponding slider gain.

3. Change the slider gain value back to zero after the robot moves about 10-15 cm.

4. Move the robot along y and z axis the same way you did for the x axis and stop the robot.

5. Send the robot to the home position using the manual switch (switch to home pose q = [0, -π/2, 0 , 0]).

6. Find an object of a known weight (around 0.5Kg). Using the finger control slider gains to open and close the
fingers, hold the object.

7. Read the torque values (output from MICO I/O block). Compare the results with the ones you calculated in the
previous section.
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