

 V 1.2 (April 2021)

 Quanser Research Studios

Self-Driving Car
Research Studio

Autonomous Driving Car Example 2 -
Simulink

2

Table of Contents
I. System Description 3

II. Running the example 4

III. Details 5

3

I. System Description

In this example, we look at the application of autonomous lane following and obstacle
detection using the QCar. The process is shown in Figure 1.

Figure 1. Component diagram

In addition, a timing module will be monitoring the entire application’s performance. The
Simulink implementation is displayed in Figure 2 below.

Figure 2. Simulink implementation of lane following with obstacle detection.

Extract Lane
Tracking

Information

Capture CSI
data

Generate
Heading

Command

Check
Obstacle
Location

Capture Intel
RealSense
depth data

Enable/disable
Motor

Command

4

II. Running the example
Check the user guide IV - Software - Simulink for details on deploying Simulink models to
the QCar as applications.

The following example can be run by configuring a continuous dual lane loop using the
roadmap layouts as part of the SDRS which are an optional add-on of the SDRS ground
station peripherals.

Figure 3. Processed lane extraction Image.

5

III. Details

1. imageSelector

Based on the laneSelector option the following function
will select the portion of the image used for the colour
thresholding algorithm. A laneSelector value of 1 will
select the region of the image where the right lane is
most likely to be present. A laneSelector value of 0 will
select the region of the image where the left lane is most likely to be present.

2. colorThresholdingHSV

Color thresholding is done in two
components. Component one converts
the imageRGB input from the RGB to
the HSV image plane. For in-depth
information for the HSV image plane
you can look at the Image Color
Spaces document in the 3. Supporting
Documentation directory. Prior to
identifying the regions of the image
where a specific HSV values are present
a subsystem generates the HSVMin and HSVMax values used to set the range for
the specific color we want to select. Using the ImageCompare block we can
generate a binary image which contains the portions of the image for which the
selected color is valid.

3. steeringCalculation

The first step for calculating the steering
angle is to approximate two parameters
which define the lane being tracked. The
linearPolyFit function analyses the lane
properties based on the laneSelector input.
Using a linear approximation a slope [m] and
y-intercept [b] is passed onto a second
MATLAB function. We compare the
nominal_x and the desired_x components of
the slopes to identify how much our steering
angle needs to be adjusted. The last MATLAB
function laneMask combines the RGB image
with the binary image from the colorThersholdingHSV to show the regular RGB
image with red pixels over the lane which is currently being tracked.

6

4. obstacleDetection

ThedrawBox function uses an input
depth image of size 640x480 and the
desired steering angle to extract a
region of interest and sequence of
points for the border of this region of
interest. The depth information for the
selected region is passed to the
calculateDistance function. We find
the region of points in the following
interval 0.05m < depth < 2m and calculate what the average depth is in the selected
region. The input stopDistance lets us compare whether or not the average depth
which we calculated is >= the stopDistance. The drawLines function uses the pixels
from the drawBox function to define the lines that draw a red box for visualizing the
region in the image of where the depth information is being computed.

5. automatedDriving

This controller subsystem will adjust the
systemCommand desired speed based on a
commanded nominalDistance(m/s) and
obstacleDistance(m/s). Using a fixed
stop_distance and nominal_tracking_distance
the linear speed command is modulated such
that the QCar slows down until the
stop_distance is greater than
obstacle_distance.

6. turnSpeedHandling

An enable constant is used to configure
what the desiredSpeed(m/s) should be.
We can pass the linear velocity command
directly or evaluate the cosine of the
steering to the power of 8. This secondary
method will slow down the QCar closer to a
turn and speed up during straight sections
of road.

7

7. speedController

A feedforward PI controller is
used to generate the desired
throttleCmd(%) signal sent to the
ESC of the QCar. The
measuredSpeed of the QCar is
compared to the desiredSpeed
where the error term is converted
from m/s to % via a proportional
gain and m to % via an integral
gain. To avoid integrator windup
due to error accumulation over
time the integral is reset using the
arm signal which is also in charge of enabling the motor command. Lastly the error
term is adjusted by a feed forward gain which converts the desired speed from m/s
to %. By using a feedforward gain the controller command is no longer centered
about zero but the desired setpoint defined by the feedforward gain.

8. indicatorAndLamps

The logic inside this subsystem
enables the LEDs on the QCar to
act as a direction indicator. For the
amber LEDs located at the front
and the back of the QCar, these
act as steering indicators. The
steering is either greater than 0.3
for a left direction or less than 0.3
for a right steering indication. The
rear left and right lamps are set to
red when the QCar has a negative
linear velocity while they are off during regular operation.

9. basicSpeedEstimation

The motor encoder on the QCar can
give us counts/s which is passed
through four scaling terms. The first
scaling term converts from counts/s
to rotations/s, a second scaling term
passes the motor rotations through a
gear ratio which gives the wheel shaft rotational speed. The third scaling term
converts the shaft speed from rotation/s to rad/s and lastly the angular speed is
multiplied by the wheel radius to get an estimate of the logitudinalCarSpeed (m/s).

8

10. userInputs

This subsystem is
divided into two
sections. The group with
the label QCar
Parameter Definition
allows us to define the
max/min values used
for the HSV
thresholding, the lane
which we want to follow,
the stopping distance to
an obstacle and the
maximum speed of the QCar. For modifying the speed of the QCar we have a slider
gain called Speed Selector which amplifies the desired speed of the QCar between
0% to 100% of the maximum speed defined in section 1 of this subsystem. To control
the stopping distance, we added an offset term called Stopping Distance Offset. By
default, the minimum stopping distance is defined in section one of this subsystem.
By default, the minimum stopping distance is set to be 0.6(m), the stopping distance
offset adds an additional percentage of the minimum stopping distance. If the offset
varies from 0% which means the QCar stops at 0.6(m) from an obstacle to 100%
offset which stops the QCar at 1.2(m) away from the obstacle. To control how closely
the QCar tracks the desired lane can be modified using the Distance To Lane slider
constant which amplifies the desired lane slope from 0% to following the line directly
and 100% which will set the QCar close to the center of the lane. Lastly, we have the
sliders for the HSV parameters. They work using the following properties:

Every HSV parameter has a mean value and window size. The fine-tuning aspect of
this model works as follows: The window size lets you decide how much of the
interval Max-Min you want to use. A window size of 100% uses the complete range
of values between Max and Min. The mean value allows you to modulate where in
the color line the average value for your window will be.

Max Min

Mean Value

Window
Size

