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I. System Description 
 
In this example, we look at the application of autonomous lane following and obstacle 
detection using the QCar. The process is shown in Figure 1.  

 

Figure 1. Component diagram 

 
In addition, a timing module will be monitoring the entire application’s performance. The 
Simulink implementation is displayed in Figure 2 below. 

 
Figure 2. Simulink implementation of lane following with obstacle detection. 

 
It should be emphasized that this is NOT a performant example. Please see the discussion 
throughout for tips on creating a more optimized system. 
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II. Running the example 
Check the user guide IV - Software - Simulink for details on deploying Simulink models to 
the QCar as applications.  
 
The following example can be run by configuring a continuous dual lane loop using the 
roadmap layouts as part of the SDRS which are an optional add-on of the SDRS ground 
station peripherals. Or even a loop of colored tape on a contrasting floor. Highly saturated 
(vibrant) colors for the line will produce the best results. 
 
 

 
 

Figure 3. Processed lane extraction Image.  
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III. Details 
 
 

1. colorThresholdingHSV 
 
Color thresholding is done in two components.  
Component one converts the imageRGB input from the 
RGB to the HSV image plane. For in-depth information 
for the HSV image plane you can look at the Image 
Color Spaces document in the 3. Supporting 
Documentation directory. Prior to identifying the 
regions of the image where a specific HSV values are present a subsystem 
generates the HSVMin and HSVMax values used to set the range for the specific 
color we want to select. Using the ImageCompare block we can generate a binary 
image which contains the portions of the image for which the selected color is valid.    
 
To aid the tuning process (at the expense of performance), this example separates 
the HSV into separate planes so you can see the direct effect of each change to the 
separate HSV Min/Max values. The combined image is the logical and of the three 
color planes. 
 

 
Figure 4. Separate Hue (color), Saturation (vibrance), and Value (brightness). 

 
Following the HSV thresholding are separate Minimum and Maximum filters used to 
remove small specs of noise and fill holes respectively. The final image should be a 
relatively clean black and white image. 
 

 
Figure 5. HSV thresholding combined with filtering. 
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2. Region of Interest 
 
The image is further filtered by 
applying a logical AND of a rectangular 
mask. This is done with constants in this 
example, but more advanced examples 
could move the window to better 
target where the lane is expected to be 
located or move further up the horizon proportional to the speed of the vehicle to 
better support speeds exceeding 1 m/s. 
 
Ideally the ROI should extract the region from the original image for processing and 
apply the HSV thresholding and all subsequent steps to a smaller sub-image (as is 
done in Autonomous Driving Car Example 2). In this example the entire lower-half of 
the CSI image is passed through the entire change to maximize flexibility and give 
you visibility into all the elements in the various processing steps, but this wastes 
substantial computational resources on areas that do not need to be processed. 
 
Even more advanced approaches would use variable size images rather than fixed 
sizes allowing the ROI to be dynamic in both location and size, but this requires that 
all processing steps implement variable size support in their processing. 
 

3. Lane Location and Steering 
 
The lane location 
subsystem uses an 
Image Find Objects 
block which searches 
for blobs of a 
minimum size and 
then sorts them by 
size. The subsequent Matlab function block gets the centroid of the largest blob and 
the difference of that x pixel location from the nominal lane position is the steering 
error. A gain is applied to the signal outside the subsystem which is used for the 
steering angle. 
 
A more advanced approach is to use a linearPolyFit function to get a lane trajectory 
(as done in Autonomous Driving Car Example 2) so as to better predict the heading 
of the lane rather than just its immediate location. 
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4. Diagnostics 
 
The diagnostics section shows the 
camera view with the detected, 
masked area overlaid in red. The red 
rectangle indicates the ROI. The 
green line is the nominal lane 
position, and the yellow line is the 
current blob centroid. 
 
The diagnostics block combining 
images and adding overlays is a 
significant draw on the 
computational resources. To reduce 
the impact, these been put in a separate sample time from the rest of the image 
processing.  Ideally this, and any extra displays or scopes should be commented out 
to save the resources for additional operations. 

 

 
Figure 6. Tracking diagnostics display. Useful information, but computationally 

expensive. 
 
 

5. obstacleDetection 
 
The obstacle detection function uses an input 
depth image and the desired steering angle to 
extract a region of interest and sequence of 
points for the border of this region of interest. 
The depth information for the selected region is 
passed to the calculateDistance function. We 
find the region of points in the following interval 
0.05m < depth < 2m  and calculate what the 
average depth is in the selected region. The 
input stopDistance lets us compare whether or 
not the average depth which we calculated is >= 
the stopDistance.  
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6. automatedDriving 
 
This controller subsystem will adjust the 
systemCommand desired speed based on 
a commanded nominalDistance(m/s) and 
obstacleDistance(m/s).  Using a fixed 
stop_distance and 
nominal_tracking_distance the linear 
speed command is modulated such that 
the QCar slows down until the stop_distance is greater than obstacle_distance.  
 
 

7. turnSpeedHandling 
 
An enable constant is used to configure 
what the desiredSpeed(m/s) should be. 
We can pass the linear velocity command 
directly or evaluate the cosine of the 
steering to the power of 8. This secondary 
method will slow down the QCar closer to a 
turn and speed up during straight sections 
of road. 

 
8. speedController  

 
A feedforward PI controller is used to 
generate the desired throttleCmd(%)  signal 
sent to the ESC of the QCar. The 
measuredSpeed of the QCar is compared to 
the desiredSpeed where the error term is 
converted from m/s to % via a proportional 
gain and m to % via an integral gain. To 
avoid integrator windup due to error accumulation over time the integral is reset 
using the arm signal which is also in charge of enabling the motor command. Lastly 
the error term is adjusted by a feed forward gain which converts the desired speed 
from m/s to %. By using a feedforward gain the controller command is no longer 
centered about zero but the desired setpoint defined by the feedforward gain.  
 

9. indicatorAndLamps 
 
The logic inside this subsystem enables the 
LEDs on the QCar to act as a direction 
indicator. For the amber LEDs located at the 
front and the back of the QCar, these act as 
steering indicators. The steering is either 
greater than 0.3 for a left direction or less than 0.3 for a right steering indication. The 
rear left and right lamps are set to red when the QCar has a negative linear velocity 
while they are off during regular operation.   
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10. basicSpeedEstimation 
 
The motor encoder on the QCar can 
give us counts/s which is passed 
through four scaling terms. The first 
scaling term converts from counts/s 
to rotations/s, a second scaling term 
passes the motor rotations through a 
gear ratio which gives the wheel shaft rotational speed. The third scaling term 
converts the shaft speed from rotation/s to rad/s and lastly the angular speed is 
multiplied by the wheel radius to get an estimate of the logitudinalCarSpeed (m/s).  
 

11. Timing 
 
If you choose to build on this 
example, monitor the timing 
scope as you make changes.  
Each graph shows the sample 
time for the respective timing 
rates and the computation time.  
If the computation time exceeds 
the defined sample time, then 
the same time will also increase.  
This can result in a sample loop 
running less than the expected 
rate and causing gaps in data 
when merging data through the 
rate transition blocks. If this 
occurs, you should either create 
a multi-step process to pipeline calculations or reduce the sample rate.  In this 
example, the CSI cameras are set to run at 120Hz, but due to the less-optimal image 
processing implemented, the image processing loop was reduced to 60Hz.  See 
Autonomous Driving Car Example 2 for an example of the CSI running at the full 
rate. 

 


