

V 1.1 (November 2020)

Self-Driving Car
Research Studio

User Guide – Software - Python

1

Caution

This equipment is designed to be used for educational and research purposes
and is not intended for use by the general public. The user is responsible to
ensure that the equipment will be used by technically qualified personnel only.

2

Table of Contents
A. Overview 3

B. Development Details 4

Quanser Modules 4

Quanser Core 4

C. Configure Timing 6

D. Deployment and Monitoring 7

E. Troubleshooting Best Practice 8

3

A. Overview
The overall process is described in Figure 1 below. Design your application as you see fit for Python 3. The
examples provided are tested with Python 3.7.5 for the Ground Control Station (GCS) and Python 3.6.9 on
the QCar. You can then transfer the application to the embedded target or run it on your local development
machine.

For more details, see the corresponding section below.

Figure 1. Process diagram for Python code deployment

4

B. Development Details
Ensure that all the modules required by your application are installed in the location where the script will
be deployed. The GCS provided with the Self-Driving Car Research Studio comes equipped with
numerous modules already installed, and so does the QCar platform. On the GCS, use the following
command in a command prompt to see what packages are available.

C:\...\> python -m pip list

Note that the GCS only has python 3.7.5 installed, and the python command defaults to this installation.
The QCar has both python 2 and python 3 installed, and thus, python3 must be used instead. In a terminal
on the QCar platform (direct connection or PuTTY terminal when remote) use the following,

nvidia@qcar-*****:~$ python3 -m pip list

Quanser Modules

Both the GCS and the QCar also have Quanser modules installed that are used for additional interactions
with hardware. These packages are,

 quanser-common 2020.7.9
 quanser-communications 2020.7.9
 quanser-devices 2020.7.9
 quanser-hardware 2020.7.9
 quanser-multimedia 2020.7.9

The provided Hardware Tests and Applications use these packages. The package quanser-
communications can be used for code development for the Stream API and generation communications.
The package quanser-hardware is used for all HIL (hardware-in-the-loop) API related development. You
can use quanser-multimedia to read most 2D and 3D cameras, and quanser-devices allows support for
reading the LIDAR and writing to the LCD.

Quanser Core

In addition to the Hardware Tests and Application examples, the Self-Driving Car Research Studio comes
with higher-level python libraries, equipped with a list of python functions commonly used throughout the
provided examples. These are broken down into 7 functional groups - Essential, Control, Interpretation, User
Interface, Decision & Planning, Miscellaneous and product_QCar, which are summarized in Table 1.

Usage: On the QCar, set up a working directory. Copy the Quanser folder from the Core section of the
provided package in your working directory, in addition to any examples you need to run. An example
folder structure is shown in Figure 2.

5

Functional Units Description

User Interface
(UI)

This consists of methods to read the joystick or gamepad on the host (GCS) or QCar platform.

Essential This module contains higher-level classes to simplify 2D and 3D camera acquisition, as well
as LIDAR data acquisition. These classes are generic and can be used for any 2D webcam.
The 3D webcam classes have been tested with the Intel RealSense camera set on both the
host (GCS) as well as the QCar platform. The LIDAR class has been tested with the RP-
LIDAR-A2 device.

Interpretation This includes classes, methods or functions that interpret sensor data according to the
application at hand. Analyzing images to detect obstacles or road signs, detecting lanes and
their location, etc. all belong here.

Control This serves as the classic control group of methods. Cruise control, steering-based speed
reduction, etc. get included here.

Decision &
Planning

These modules include the higher-level decision making that is involved with autonomous
or intelligent systems.

Miscellaneous This includes other support methods that act as a glue for the other units. You can find
classes for signal generators, filters, simplified stream, variable and fixed step
differentiator/integrators and other utilities here.

Product_QCar This includes numerous I/O methods commonly used for the QCar, Motor commands and
LED values written to the device, and measurements such as IMU, motor current, and
battery voltage are included here.

Table 1. Quanser higher-level modules

Figure 2. Example folder structure on the QCar

6

C. Configure Timing
It is important to maintain a consistent sample rate for real-time applications. Given a sample time, all
code in a single iteration must be executed in a time window that is less than the required sample time. In
cases where the execution of an iteration is completed in less than the sample time, it is also essential that
the next iteration not begin until a full unit of the sample time has elapsed.

For example, consider an image analysis task that must be executed at 60 Hz, corresponding to a ‘sample
time’ of 16.7 ms (1/60). If the time taken to execute the analysis code, also referred to as the ‘computation
time’, is less than the sample time, say 10 ms, then it is important to wait an additional 6.7ms at each time
step before proceeding to the next iteration. On the other hand, if the computation time is greater than the
sample time, say 20ms, then the sample time cannot be met. In such cases it may be essential to lower
the sample rate or increase the sample time, to say 40Hz or 25 ms. Note that the time module’s time()
method returns the current hardware clock’s timestamp in seconds.

In Python, the code is executed as fast as possible, and a wait can be inserted using the time module’s
sleep() method or the opencv module’s waitkey() method for imaging applications. The following snippet
provides a detailed example on how to accomplish this.

import time

Define the timestamp of the hardware clock at this instant

startTime = time.time()

Define a method that returns the time elapsed since startTime was defined

def elapsed_time():

 return time.time() - startTime

Define sample time starting from the rate

sampleRate = 100 # Hertz

sampleTime = 1/sampleRate # Seconds

Total time to execute this application in seconds.

simulationTime = 5.0

Refresh the startTime to ensure you start counting just before the main loop

startTime = time.time()

Execute main loop until the elapsed_time has crossed simulationTime

while elapsed_time < simulationTime:

 # Measured the current timestamp

 start = elapsed_time()

 # All your code goes here ...

 # Measure the last timestamp

 end = elapsed_time()

 # Calculate the computation time of your code per iteration

 computationTime = end - start

 # If the computationTime is greater than or equal

 # to sampleTime, proceed onto next step

 if computationTime < sampleTime:

 # sleep for the remaining time left in this iteration

 time.sleep(sampleTime - computationTime)

7

D. Deployment and Monitoring
1. When done with python code development, and deploying the application on the development

platform (GCS or direct connection with QCar), proceed to Step 3.

Note: If your code requires access to onboard hardware (such as LIDAR or camera), you must
deploy the code to the QCar for execution (see Step 2)..

2. To deploy applications to the QCar while developing on a different machine, you will need to use
WinSCP or USB to transfer your files and may additionally need VcXsrv to view the output. See the
III - Connectivity User Guide for more information on this.

3. Run your application using the terminal command:
 >> python test.py

Note: If using any Hardware-in-the-loop (HIL) methods or using the LIDAR, you will also need the
sudo flag :
 >> sudo python test.py

Note: If running on the QCar, you must specify python3 for python 3.x.x

8

E. Troubleshooting Best Practice
In order to ease debugging during application development, we use the try/except/finally structure to
catch exceptions that otherwise terminate the application unexpectedly. Most of our methods in the
Quanser library have this structure built in. After configuration and initialization, scripts begin with try. If an
unexpected error arises, it will be captured by the except section instead. This can ensure that code in the
finally section still gets executed and the application ends gracefully. For example, if you specify an
incorrect channel number for HIL I/O, a HILError will be raised. However, you still want to call the
terminate() method to close access to the HIL board, without which, opening it on the next script call may
fail.

Main Loop

try:

 while elapsed_time() < simulationTime:

 # Start timing this iteration

 start = time.time()

 # Basic IO - write motor commands

 mtr_cmd = np.array([0.2*np.sin(elapsed_time()*2*np.pi/5),

 -0.5*np.sin(elapsed_time()*2*np.pi/5)])

 LEDs = np.array([0, 1, 0, 1, 0, 1, 0, 1])

 current, batteryVoltage, encoderCounts = myCar.read_write_std(mtr_cmd, LEDs)

 # End timing this iteration

 end = time.time()

 # Calculate computation time, and the time that the thread should pause/sleep for

 computation_time = end - start

 sleep_time = sampleTime - computation_time%sampleTime

 # Pause/sleep and print out the current timestamp

 time.sleep(sleep_time)

 print('Simulation Timestamp :', elapsed_time(), ' s, battery is at :', 100 - (12.6 -

 batteryVoltage)*100/(2.1), ' %.')

 counter += 1

except KeyboardInterrupt:

 print("User interrupted!")

finally:

 myCar.terminate()

9

© Quanser Inc., All rights reserved.

Solutions for teaching and research. Made in Canada.

