

 V 1.1 (November 2020)

 Quanser Research Studios

Self-Driving Car
Research Studio

RGBD Imaging - Python

2

Table of Contents
I. System Description 3

II. Running the example 3

III. Details 4

3

I. System Description

In this example, we will capture images from the Intel Realsense’s RGB and Depth cameras.
After thresholding the Depth image based on a minimum and maximum distance, a filtered
binary mask is applied to RGB Image to only show the image within that range.

Figure 1. Component diagram

II. Running the example
Check the user guide V - Software - Python for details on deploying python scripts to the
QCar as applications.

In this example, users only need to define the image frame size and the maximum &
minimum distance for the depth image filtering. After executing the script on the QCar, the
results should look similar to Figure. 2. (Another QCar is sitting in the front as an object.)

Figure 2. RGBD outputs showing the filtered image based on distance thresholds

Capture
RGB Image

Capture
Depth
Image

Filter
distance

information

Mask
filtered

image with
RGB image

Display

4

III. Details
1. Depth image thresholding

binary_thresholding() (that is provided with the q_interpretation.py core library)
automatically detects 3-color or grayscale images and correspondingly thresholds
them using the bounds provided. In this example, it thresholds based on the
maximum and minimum distance that users define. The result is a binary image
(numpy array) that is 1 within the threshold bounds and 0 elsewhere.

binary_now = qi.binary_thresholding(myCam1.image_buffer_depth_m, min_distance,

max_distance).astype(np.uint8)

2. Clean up the noise from the RGB-D sensor

To clean up the noisy depth image, two filters are applied. This first consists of a
temporal difference filter to remove single frame random noise. By calculating the
difference between the current and previous frames, and removing those pixels in
the current frame, we remove noise between frames. For a new pixel to get
registered, it must last at least 2 frames. This introduces a maximum delay of
sample_time in the system, which is set to 1/30 s. Next, a spatial closing filter
(morphological dilation and erosion sequence) is applied to fill holes and clean up
edges.

binary_clean = qi.image_filtering_close(cv2.bitwise_and(

cv2.bitwise_not(np.abs(binary_now - binary_before)/255), binary_now/255),

dilate=3, erode=1, total=1)

3. Image correction between the depth camera and RGB camera and mask

The field of view is different on both cameras and there is also a physical distance
between them. The first line handles this transformation. This adjusted mask is then
applied to the RGB image.

binary_clean = cv2.resize(binary_clean[81:618, 108:1132], (1280,

720)).astype(np.uint8)

masked_RGB = cv2.bitwise_and(myCam1.image_buffer_RGB, myCam1.image_buffer_RGB,

mask=binary_clean)

