

 V 1.0 (February 2021)

 Quanser Research Studios

Self-Driving Car
Research Studio

Lane Following – Python

2

Table of Contents
I. System Description 3

II. Running the example 3

III. Details 4

3

I. System Description

In this example, we will use an analytical method to keep the car following a yellow lane.
The camera image data is captured and we use image processing and analysis to output a
steering command. The gamepad controller outputs a car speed and will overtake the
steering if needed. The process is shown in Figure 1.

Figure 1. Component diagram

II. Running the example
Check the user guide V - Software - Python for details on deploying python scripts to the
QCar as applications. Please make sure to assign the right event number to the joystick
initializer gamepadViaTarget().

Place your QCar on the right side of the yellow lane. Once you have set the controller
number correctly for the gamepad (see Python Hardware Test documentation for details),
run the script using a sudo flag. A CV2 window shows the binary image of the yellow lane
the QCar captures. If there is no lane or the lane is grainy, adjust the HSV upper and lower
bounds. Press X to enable the automatic steering. Press RT to provide throttle. If the QCar
failed to follow the lane, release X to have manual control to the QCar. Use the left stick to
manually steer.

Note: If the manual steering does not appear to work, please ensure the mode light on the
gamepad is off.

Capture
Image
Data

QCar I/O

Gamepad
Command

Filtered
Image

Interpret to
Application

Context

4

III. Details

1. Image Processing

We leverage the functionality of OpenCV in this application. After the image is
cropped to let it focus on the lower half of the image frame, we use cv2.cvtColor to
convert the image format. Please visit OpenCV official website to check out more
functionalities. After the image is transferred to HSV format, binary_thresholding
takes the HSV image and thresholds it based on the defined boundaries. This is the
line where we can change to threshold difference colors.

Convert to HSV and then threshold it for yellow

hsv_buf = cv2.cvtColor(cropped_rgb, cv2.COLOR_BGR2HSV)

binary = binary_thresholding(hsv_buf, lower_bounds=np.array([10, 50, 100]),

upper_bounds=np.array([45, 255, 255]))

2. Performance considerations

Raw_steering angle is controlled by the slope and intercept taking from
find_slope_intercept_from_binary. Imagine a straight line crossing the first quadrant
of an axis. The slope is the gradient which controls the turning angle. When the road
is bending to the right, the slope decreases and vice versa. The intercept is the
intercept value with the vertical axis which decides the distance that QCar tries to
keep away from the yellow lane. The smaller the number, the closer it will get to the
yellow lane. This is the line where we can adjust the slope and intercept.

steering from slope and intercept

raw_steering = 1.5*(slope - 0.3419) + (1/150)*(intercept+5)

