

 V 1.1 (November 2020)

 Quanser Research Studios

Self-Driving Car
Research Studio

RGBD Imaging - Simulink

2

Table of Contents
I. System Description 3

II. Running the example 4

III. Details 5

3

I. System Description

In this example, we will capture images from the Intel RealSense’s RGB and Depth cameras.
After thresholding the RGB image for a red stop sign, and extracting the sign’s coordinates,
the distance to the sign will be extracted from the corresponding coordinates in the depth
image.

Figure 1. Component diagram

In addition, a timing module will be monitoring the entire application’s performance. The
Simulink implementation is displayed in Figure 2 below.

Figure 2. Simulink implementation of RGBD Imaging

Find Stop
Sign Coordinates

Display

Extract Stop Sign
Depth

Capture RGB
Image

Capture Depth
Image

Display
Monitor Timing

4

II. Running the example
Check the user guide IV - Software - Simulink for details on deploying Simulink models to
the QCar as applications.

As lighting conditions and other objects in the scene may vary, you may need to
adjust/tune the thresholding parameters inside the findStopSignLocation module. See the
support documentation on Image Color Spaces and Image Thresholding for more
information on this. Tune the saturation and value parameters until the binary image only
displays the stop sign. The output in the 3 Video Display blocks should look those in Figure
3, which shows the raw RGB output, a binary output after thresholding, and the depth
output.

Figure 3. RGBD outputs showing RGB image (top), bitonal thresholding

image (middle) and depth image (bottom)

5

III. Details

1. Capturing nothing but the Stop Sign

First, we pass the RGB image as
imageRGB to the colorThresholdingHSV
module inside the findStopSignLocation
subsystem. This converts it to the HSV
color space, decoupling the color itself
from its intensity and lightness/darkness.
subsystem using an Image Transform
block.

The stop sign is red, which corresponds to a hue of 0. Once we threshold the HSV
image with suitable saturation and value parameters, the imageBinary output shows
all the pixels that fall within our color search region.

2. Finding the location of this blob in image coordinates

Within the findStopSignLocation
subsystem, we use the Image
Find Objects block to find the
(row, col) image coordinates of
the largest blob in the
imageBinary input. We are only
interested in the center of this
blob, available at the ctr output.
Note that this is w.r.t a coordinate
frame attached at pixel location (1,
1). We need the location with
respect to the center of the
image, which is handled by a
simple subtraction.

3. Estimating distance to the blob from the depth image

Although the RGB and Depth images
are both captured at a 1280 x 720
resolution, the depth camera has a
higher field of view, and hence the
coordinates from step 2 must be
adjusted before extracting the
depth. We account for the field of
view differences and then use a
selector to extract the distance in
the depth image at the adjusted
coordinates.

6

7

4. Performance considerations

To improve performance, we only execute the findStopSignLocation subsystem
when imageRGB is new, through the means of an enabled subsystem. Therefore,
the blobFound? output is high (1) if and only if a blob is found AND a new RGB image
was available. Next, the findStopSignDistance subsystem is executed only if the
imageDepth input is new AND blobFound? is true.

Overall, the distance to the stop sign is only calculated if three conditions (new RGB
image, new Depth image as well as a blob actually found) are met simultaneously,
improving performance. Also note that the Video Display blocks are placed within
the enabled subsystems.

