

 V 1.1 (November 2020)

 Quanser Research Studios

Self-Driving Car
Research Studio

LIDAR Point Cloud - Python

2

Table of Contents
I. System Description 3

II. Running the example 3

III. Details 4

3

I. System Description

In this example, we will capture LIDAR data from the RP LIDAR A2 on the QCar platform, and
generate a point cloud map. The process is shown in Figure 1.

Figure 1. Component diagram

II. Running the example
Check the user guide V - Software - Python for details on deploying python scripts to the
QCar platform. As your room size may vary, change the parameters dim and gain as you
see fit. Figure 2 shows the typical output expected when running this example (via
XLaunch).

Figure 2. Point cloud map generated in a room.

Generate
Point Cloud

Capture
LIDAR data Display Map

4

III. Details

1. Capturing LIDAR data

The data available using the LIDAR class is already adjusted to be presented
counterclockwise starting at the positive X axis of the lidar frame (right direction). The
LIDAR class object has two attributes, distances and angles, that correspond to the
data. The first line below shows the initialization step, and the second shows how to
read the data.

myLidar = LIDAR(num_measurements=720)

 myLidar.read()

2. Converting distances/angles to x y

After heading angles are converted from lidar frame to QCar body frame, the
distance/heading data pairs are converted to x y pairs (in meters) using the lines
below, and then to pX pY pairs (in pixels) for the image.
x = myLidar.distances[idx]*np.cos(angles_in_body_frame[idx])
y = myLidar.distances[idx]*np.sin(angles_in_body_frame[idx])

pX = (dim/2 - x*gain).astype(np.uint16)

pY = (dim/2 - y*gain).astype(np.uint16)

3. Generating the point cloud

Note that the map is set to zeros at the beginning.

map = np.zeros((dim, dim), dtype=np.float32)

It is then decayed slowly using the decay parameter at the start of the loop.

map = decay*map

A line below updates the map at the locations pX pY near the end of the loop.

map[pX, pY] = 1

4. Performance considerations

To improve performance, we only create a blank map when initializing the code.
Within the main loop, older map data is slowly decayed. The module opencv
provides the waitKey() method for pausing in this case. See the user guide V -
Software - Python for more information on timing.

