

 V 1.0 (April 2021)

 Quanser Research Studios

Self-Driving Car
Research Studio

Autonomous Driving Car Example 1 -
Simulink

2

Table of Contents
I. System Description 3

II. Running the example 4

III. Details 5

3

I. System Description

In this example, we look at the application of autonomous lane following and obstacle
detection using the QCar. The process is shown in Figure 1.

Figure 1. Component diagram

In addition, a timing module will be monitoring the entire application’s performance. The
Simulink implementation is displayed in Figure 2 below.

Figure 2. Simulink implementation of lane following with obstacle detection.

It should be emphasized that this is NOT a performant example. Please see the discussion
throughout for tips on creating a more optimized system.

Extract Lane
Tracking

Information

Capture CSI
data

Generate
Heading

Command

Check
Obstacle
Location

Capture Intel
RealSense
depth data

Enable/disable
Motor

Command

4

II. Running the example
Check the user guide IV - Software - Simulink for details on deploying Simulink models to
the QCar as applications.

The following example can be run by configuring a continuous dual lane loop using the
roadmap layouts as part of the SDRS which are an optional add-on of the SDRS ground
station peripherals. Or even a loop of colored tape on a contrasting floor. Highly saturated
(vibrant) colors for the line will produce the best results.

Figure 3. Processed lane extraction Image.

5

III. Details

1. colorThresholdingHSV

Color thresholding is done in two components.
Component one converts the imageRGB input from the
RGB to the HSV image plane. For in-depth information
for the HSV image plane you can look at the Image
Color Spaces document in the 3. Supporting
Documentation directory. Prior to identifying the
regions of the image where a specific HSV values are present a subsystem
generates the HSVMin and HSVMax values used to set the range for the specific
color we want to select. Using the ImageCompare block we can generate a binary
image which contains the portions of the image for which the selected color is valid.

To aid the tuning process (at the expense of performance), this example separates
the HSV into separate planes so you can see the direct effect of each change to the
separate HSV Min/Max values. The combined image is the logical and of the three
color planes.

Figure 4. Separate Hue (color), Saturation (vibrance), and Value (brightness).

Following the HSV thresholding are separate Minimum and Maximum filters used to
remove small specs of noise and fill holes respectively. The final image should be a
relatively clean black and white image.

Figure 5. HSV thresholding combined with filtering.

6

2. Region of Interest

The image is further filtered by
applying a logical AND of a rectangular
mask. This is done with constants in this
example, but more advanced examples
could move the window to better
target where the lane is expected to be
located or move further up the horizon proportional to the speed of the vehicle to
better support speeds exceeding 1 m/s.

Ideally the ROI should extract the region from the original image for processing and
apply the HSV thresholding and all subsequent steps to a smaller sub-image (as is
done in Autonomous Driving Car Example 2). In this example the entire lower-half of
the CSI image is passed through the entire change to maximize flexibility and give
you visibility into all the elements in the various processing steps, but this wastes
substantial computational resources on areas that do not need to be processed.

Even more advanced approaches would use variable size images rather than fixed
sizes allowing the ROI to be dynamic in both location and size, but this requires that
all processing steps implement variable size support in their processing.

3. Lane Location and Steering

The lane location
subsystem uses an
Image Find Objects
block which searches
for blobs of a
minimum size and
then sorts them by
size. The subsequent Matlab function block gets the centroid of the largest blob and
the difference of that x pixel location from the nominal lane position is the steering
error. A gain is applied to the signal outside the subsystem which is used for the
steering angle.

A more advanced approach is to use a linearPolyFit function to get a lane trajectory
(as done in Autonomous Driving Car Example 2) so as to better predict the heading
of the lane rather than just its immediate location.

7

4. Diagnostics

The diagnostics section shows the
camera view with the detected,
masked area overlaid in red. The red
rectangle indicates the ROI. The
green line is the nominal lane
position, and the yellow line is the
current blob centroid.

The diagnostics block combining
images and adding overlays is a
significant draw on the
computational resources. To reduce
the impact, these been put in a separate sample time from the rest of the image
processing. Ideally this, and any extra displays or scopes should be commented out
to save the resources for additional operations.

Figure 6. Tracking diagnostics display. Useful information, but computationally

expensive.

5. obstacleDetection

The obstacle detection function uses an input
depth image and the desired steering angle to
extract a region of interest and sequence of
points for the border of this region of interest.
The depth information for the selected region is
passed to the calculateDistance function. We
find the region of points in the following interval
0.05m < depth < 2m and calculate what the
average depth is in the selected region. The
input stopDistance lets us compare whether or
not the average depth which we calculated is >=
the stopDistance.

8

6. automatedDriving

This controller subsystem will adjust the
systemCommand desired speed based on
a commanded nominalDistance(m/s) and
obstacleDistance(m/s). Using a fixed
stop_distance and
nominal_tracking_distance the linear
speed command is modulated such that
the QCar slows down until the stop_distance is greater than obstacle_distance.

7. turnSpeedHandling

An enable constant is used to configure
what the desiredSpeed(m/s) should be.
We can pass the linear velocity command
directly or evaluate the cosine of the
steering to the power of 8. This secondary
method will slow down the QCar closer to a
turn and speed up during straight sections
of road.

8. speedController

A feedforward PI controller is used to
generate the desired throttleCmd(%) signal
sent to the ESC of the QCar. The
measuredSpeed of the QCar is compared to
the desiredSpeed where the error term is
converted from m/s to % via a proportional
gain and m to % via an integral gain. To
avoid integrator windup due to error accumulation over time the integral is reset
using the arm signal which is also in charge of enabling the motor command. Lastly
the error term is adjusted by a feed forward gain which converts the desired speed
from m/s to %. By using a feedforward gain the controller command is no longer
centered about zero but the desired setpoint defined by the feedforward gain.

9. indicatorAndLamps

The logic inside this subsystem enables the
LEDs on the QCar to act as a direction
indicator. For the amber LEDs located at the
front and the back of the QCar, these act as
steering indicators. The steering is either
greater than 0.3 for a left direction or less than 0.3 for a right steering indication. The
rear left and right lamps are set to red when the QCar has a negative linear velocity
while they are off during regular operation.

9

10. basicSpeedEstimation

The motor encoder on the QCar can
give us counts/s which is passed
through four scaling terms. The first
scaling term converts from counts/s
to rotations/s, a second scaling term
passes the motor rotations through a
gear ratio which gives the wheel shaft rotational speed. The third scaling term
converts the shaft speed from rotation/s to rad/s and lastly the angular speed is
multiplied by the wheel radius to get an estimate of the logitudinalCarSpeed (m/s).

11. Timing

If you choose to build on this
example, monitor the timing
scope as you make changes.
Each graph shows the sample
time for the respective timing
rates and the computation time.
If the computation time exceeds
the defined sample time, then
the same time will also increase.
This can result in a sample loop
running less than the expected
rate and causing gaps in data
when merging data through the
rate transition blocks. If this
occurs, you should either create
a multi-step process to pipeline calculations or reduce the sample rate. In this
example, the CSI cameras are set to run at 120Hz, but due to the less-optimal image
processing implemented, the image processing loop was reduced to 60Hz. See
Autonomous Driving Car Example 2 for an example of the CSI running at the full
rate.

