

 V 1.1 (November 2020)

 Quanser Research Studios

Self-Driving Car
Research Studio

Manual Drive - Python

2

Table of Contents
I. System Description 3

II. Running the example 3

III. Details 4

3

I. System Description

In this example, we will capture commands from a Gamepad and use it to manually drive
the QCar platform. The application will also calculate the car’s speed from encoder counts.
The process is shown in Figure 1.

Figure 1. Component diagram

II. Running the example
Check the user guide V - Software - Python for details on deploying python scripts to the
QCar as applications.

Once you have set the controller number correctly for the gamepad (see Python Hardware
Test documentation for details), run the script using a sudo flag. There are two ways to drive
the car. If users set the configuration to 3 in the script, the Gamepad’s right stick
longitudinal axis is used for the throttle, the left stick lateral axis is used for steering, and the
LB button is used to arm the QCar. If users set the configuration to 4 in the script, the right
trigger RT is used to provide positive throttle in the forward/reverse directions based on
the state of the button A.

Note: If the steering does not appear to work, please ensure the mode light on the
gamepad is off.

Interpret to
Application

Context

Capture
Gamepad

Commands
QCar I/O

Indicators
and Lamps

Estimate
Speed

4

III. Details

1. Encoder counts to linear speed

The q_interpretation module contains the method basic_speed_estimation to
convert from encoder speed (counts/s) to linear speed (m/s) based on the QCar’s
differential and spur parameters. However, the HIL I/O provides encoder counts,
which must first be differentiated. This is accomplished by using the
differentiator_variable method within the Calculus class of the q_misc library
provided. Initialized with the sampleTime, you can set the actual step size within the
main loop when calling the differentiator, accounting for variable sample time.

Note: Don’t forget to initialize the differentiator using the next method!

Set up a differentiator to get encoderSpeed from encoderCounts

diff = Calculus().differentiator_variable(sampleTime)

_ = next(diff)

timeStep = sampleTime

Inside main while loop

 encoderSpeed = diff.send((encoderCounts, timeStep))

2. Performance considerations

We run the example at 50 Hz. The os module is used here to clear the terminal
screen whenever new gamepad updates are received. Although this is expensive
and isn’t the best thing to do, we account for the slower sample rates by using the
variable sample time differentiator instead of a static one. Without accounting for the
variable sample times, the differentiator will underestimate sample times and
thereby overestimate the speed. Comment out the system screen clear as well as
the print statement (similar to the snippet below) to improve performance up to 500
Hz.

if new:

 os.system('clear')

 print(...)

