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I. System Description 
 
In this example, we look at the application of autonomous lane following and obstacle 
detection using the QCar. The process is shown in Figure 1.  

 

Figure 1. Component diagram 

 
In addition, a timing module will be monitoring the entire application’s performance. The 
Simulink implementation is displayed in Figure 2 below. 

 
Figure 2. Simulink implementation of lane following with obstacle detection. 
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II. Running the example 
Check the user guide IV - Software - Simulink for details on deploying Simulink models to 
the QCar as applications.  
 
The following example can be run by configuring a continuous dual lane loop using the 
roadmap layouts as part of the SDRS which are an optional add-on of the SDRS ground 
station peripherals.   
 

   
 

Figure 3. Processed lane extraction Image.  
 

  



5 

 

III. Details 
 

1. imageSelector   
 
Based on the laneSelector option the following function 
will select the portion of the image used for the colour 
thresholding algorithm. A laneSelector value of 1 will 
select the region of the image where the right lane is 
most likely to be present.  A laneSelector value of 0 will 
select the region of the image where the left lane is most likely to be present.  
 

2. colorThresholdingHSV 
 
Color thresholding is done in two 
components.  Component one converts 
the imageRGB input from the RGB to 
the HSV image plane. For in-depth 
information for the HSV image plane 
you can look at the Image Color 
Spaces document in the 3. Supporting 
Documentation directory. Prior to 
identifying the regions of the image 
where a specific HSV values are present 
a subsystem generates the HSVMin and HSVMax values used to set the range for 
the specific color we want to select. Using the ImageCompare block we can 
generate a binary image which contains the portions of the image for which the 
selected color is valid.    
 
 

3. steeringCalculation 
 
The first step for calculating the steering 
angle is to approximate two parameters 
which define the lane being tracked. The 
linearPolyFit function analyses the lane 
properties based on the laneSelector input. 
Using a linear approximation a slope [m] and 
y-intercept [b]  is passed onto a second 
MATLAB function. We compare the 
nominal_x and the desired_x components of 
the slopes to identify how much our steering 
angle needs to be adjusted. The last MATLAB 
function laneMask combines the RGB image 
with the binary image from the colorThersholdingHSV to show the regular RGB 
image with red pixels over the lane which is currently being tracked.           
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4. obstacleDetection 

 
ThedrawBox function uses an input 
depth image of size 640x480 and the 
desired steering angle to extract a 
region of interest and sequence of 
points for the border of this region of 
interest. The depth information for the 
selected region is passed to the 
calculateDistance function. We find 
the region of points in the following 
interval 0.05m < depth < 2m  and calculate what the average depth is in the selected 
region. The input stopDistance lets us compare whether or not the average depth 
which we calculated is >= the stopDistance. The drawLines function uses the pixels 
from the drawBox function to define the lines that draw a red box for visualizing the 
region in the image of where the depth information is being computed.  
 

5. automatedDriving 
 
This controller subsystem will adjust the 
systemCommand desired speed based on a 
commanded nominalDistance(m/s) and 
obstacleDistance(m/s).  Using a fixed 
stop_distance and nominal_tracking_distance 
the linear speed command is modulated such 
that the QCar slows down until the 
stop_distance is greater than 
obstacle_distance.  
 
 

6. turnSpeedHandling 
 
An enable constant is used to configure 
what the desiredSpeed(m/s) should be. 
We can pass the linear velocity command 
directly or evaluate the cosine of the 
steering to the power of 8. This secondary 
method will slow down the QCar closer to a 
turn and speed up during straight sections 
of road. 
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7. speedController  
 
A feedforward PI controller is 
used to generate the desired 
throttleCmd(%)  signal sent to the 
ESC of the QCar. The 
measuredSpeed of the QCar is 
compared to the desiredSpeed 
where the error term is converted 
from m/s to % via a proportional 
gain and m to % via an integral 
gain. To avoid integrator windup 
due to error accumulation over 
time the integral is reset using the 
arm signal which is also in charge of enabling the motor command. Lastly the error 
term is adjusted by a feed forward gain which converts the desired speed from m/s 
to %. By using a feedforward gain the controller command is no longer centered 
about zero but the desired setpoint defined by the feedforward gain.  
 

8. indicatorAndLamps 
 
The logic inside this subsystem 
enables the LEDs on the QCar to 
act as a direction indicator. For the 
amber LEDs located at the front 
and the back of the QCar, these 
act as steering indicators. The 
steering is either greater than 0.3 
for a left direction or less than 0.3 
for a right steering indication. The 
rear left and right lamps are set to 
red when the QCar has a negative 
linear velocity while they are off during regular operation.   
 

9. basicSpeedEstimation 
 
The motor encoder on the QCar can 
give us counts/s which is passed 
through four scaling terms. The first 
scaling term converts from counts/s 
to rotations/s, a second scaling term 
passes the motor rotations through a 
gear ratio which gives the wheel shaft rotational speed. The third scaling term 
converts the shaft speed from rotation/s to rad/s and lastly the angular speed is 
multiplied by the wheel radius to get an estimate of the logitudinalCarSpeed (m/s).  
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10. userInputs 
 
This subsystem is 
divided into two 
sections. The group with 
the label QCar 
Parameter Definition 
allows us to define the 
max/min values used 
for the HSV 
thresholding, the lane 
which we want to follow, 
the stopping distance to 
an obstacle and the 
maximum speed of the QCar. For modifying the speed of the QCar we have a slider 
gain called Speed Selector which amplifies the desired speed of the QCar between 
0% to 100% of the maximum speed defined in section 1 of this subsystem. To control 
the stopping distance, we added an offset term called Stopping Distance Offset. By 
default, the minimum stopping distance is defined in section one of this subsystem. 
By default, the minimum stopping distance is set to be 0.6(m), the stopping distance 
offset adds an additional percentage of the minimum stopping distance. If the offset 
varies from 0% which means the QCar stops at 0.6(m) from an obstacle to 100% 
offset which stops the QCar at 1.2(m) away from the obstacle. To control how closely 
the QCar tracks the desired lane can be modified using the Distance To Lane slider 
constant which amplifies the desired lane slope from 0% to following the line directly 
and 100% which will set the QCar close to the center of the lane.  Lastly, we have the 
sliders for the HSV parameters. They work using the following properties:  
 

 
Every HSV parameter has a mean value and window size. The fine-tuning aspect of 
this model works as follows: The window size lets you decide how much of the 
interval Max-Min you want to use.  A window size of 100% uses the complete range 
of values between Max and Min. The mean value allows you to modulate where in 
the color line the average value for your window will be.  

Max Min  

Mean Value 

Window 
Size  


