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1 INTRODUCTION
This laboratory manual describes how to design a state-feedback control system that can balance a stiff and flexible
pendulum simultaniously using the IP02 linear servo cart.

The plant has two main components: the Quanser IP02 linear motion plant and the Quanser Flexible Pendulum-
module. The flexible pendulum is a flexible link with an end weight and a strain gauge to measure the deflection of
the link. The stiff pendulum is the long pendulum described in the SPG and SIP User Manual [2].

Topics Covered

• Obtain a state-space representation of the open-loop system.

• Design and tune an LQR-based state-feedback controller satisfying the closed-loop system's desired design
specifications.

• Simulate the system and ensure it is stabilized using the designed state-feedback control.

• Implement the state-feedback controller on the FLEXPEN system and evaluate its actual performance.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. See the system requirements in Section 4 for the required hardware and software.

2. Modeling and state-space representation.

3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.

4. Basics of LabVIEWTM .

5. LabVIEW Integration lab detailed in Appendix A in the IP02 Laboratory Workbook [4].
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2 BACKGROUND

2.1 Modeling

2.1.1 Model Convention

The flexible pendulum model is shown in Figure 2.1. The FLEXPEN is attached to the IP02 Linear Servo Base Unit
pendulum pivot. The positive sense of rotation is defined to be counter-clockwise (CCW), when facing the linear
cart pinions. The positive direction of linear displacement of the IP02 cart is to the right when facing the cart. Finally,
the zero angle of the stiff pendulum and deflection, θ = 0 and γ = 0, corresponds to the two pendulums perfectly
balanced vertically.

The IP02 cart location is at linear position xc. The IP02 cart assembly has mass, mc, and is actuated by an applied
force, Fc. The pendulums have masses msp and mfp located at their respective centres of mass, (xsp, ysp) and
(xfp, yfp). The angle of deflection of the flexible pendulum, γ, is defined as the angle between the stiff pendulum
and a line between the pivot and tip of the flexible pendulum. The deflection of the flexible link, xdef , is defined as
the distance between the tip of the stiff pendulum, and the tip of the flexible pendulum.

Figure 2.1: Flexible pendulum conventions

The Cartesian coordinates of the stiff pendulum centre of mass are

xsp = xc − lsp sin(α)

ysp = lsp cos(α)

where lsp is the distance of the centre of mass from the pivot point. Similarly, the coordinates of the flexible pendulum
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centre of gravity are
xfp = xc − lsp sin(α)− lfp sin(γ)
yfp = lsp cos(α) + lfp cos(γ)

where lfp is the distance of the flexible link centre of mass from the pivot point.

The strain gauge sensor measures the linear deflection of the tip. The angle of deflection is small, and therefore the
small angle approximation sin(x) ≈ x can be used. Thus

γ =
xdef

Llink

where Llink is the distance from the position on the flexible link where the strain gage begins to measure, to the tip
of the link. This translates into the length of the flexible link that can me measured.

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the IP02 cart, flexible pendulum, and stiff pendulum
with respect to the servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi

The variables qi are called generalized coordinates. For this system let

q(t)⊤ =
[
xc(t) α(t) γ(t)

]
where, as shown in Figure 2.1 α(t) is the stiff pendulum angle, γ is the flexible link deflection angle, and xc(t) is the
linear cart position. The corresponding velocities are

q̇(t)⊤ =
[
∂xc(t)
∂t

∂α(t)
∂t

∂γ(t)
∂t

]
Note: The dot convention for the time derivative will be used throughout this document, e.g., α̇ = dα

dt . The time
variable t will also be dropped from α, γ, and xc, e.g., α = α(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

∂2L

∂t∂ẋc
− ∂L

∂xc
= Q1

∂2L

∂t∂α̇
− ∂L

∂α
= Q2

∂2L

∂t∂γ̇
− ∂L

∂γ
= Q2

The Lagrangian of the system is described
L = T − V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case the viscous damping forces are neglected, and the generalized
forces acting on the system are thus:

Q1 = Fc, (2.1)
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Q2 = 0, (2.2)
and

Q3 = 0. (2.3)

Our control variable is the input servo motor voltage, Vm.

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the system
can be obtained. See the supplied Maple worksheet (or its equivalent HTML representation) for the complete
derivation.

Based on the system schematic shown in Figure 2.1 and the generalized forces Equation 2.1, Equation 2.2 and
Equation 2.2, the first Lagrange equation can be expressed as:

(msplsp sin(α) +mfplsp sin(α))α̇2 +mfplfp sin(γ)γ̇2 + (mfp +mc +msp)ẍc + (−msplsp cos(α)−mfplsp cos(α))α̈
−mfplfp cos(γ)γ̇ = Fc

the second Lagrange equation is

(−mfplfp sin(γ)lsp cos(α) +mfplfp cos(γ)lsp sin(γ))γ̇2 + (−msplsp cos(α)−mfplsp cos(α))ẍc + (Jsp

+mfpl
2
sp +mspl

2
sp)α̈+ (mfplfp sin(γ)lsp sin(α) +mfplfp cos(γ)lsp cos(α))γ̈ −mspglsp sin(α)−mfpglsp sin(α) = 0

the third Lagrange equation is

Ksγ + (−mfplfp cos(γ)lsp sin(α) +mfplfp sin(γ)lsp cos(α))α̇2 −mfplfp cos(γ)ẍc + (mfplfp sin(γ)lsp sin(α)
+mfplfp cos(γ)lsp cos(α))α̈+ (Jfp +mfpl

2
fp)γ̈ −mfpglfp sin(γ) = 0

Solving the two Lagrange equations for the second-order time derivative of the Lagrangian coordinates results in
the non-linear equations presented in the FLEXPEN.mws MapleTM worksheet, or the HTML equivalent.

The force applied to the linear cart, Fc, is generated by the servo motor as described by the equation

Fc =
ηgKgKt

Rmrmp

(
−KgKmẋc

rmp
+ ηmVm

)
(2.4)

See [1] for a description of the corresponding IP02 parameters (e.g. such as the back-emf constant, Km).

2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

z⊤ = [z1 z2]

and f(z) is to be linearized about the operating point

z0
⊤ = [a b]

The linearized function is

flin = f(z0) +

(
∂f(z)

∂z1

) ∣∣∣∣
z=z0

(z1 − a) +

(
∂f(z)

∂z2

) ∣∣∣∣
z=z0

(z2 − b)
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2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.5)

and
y = Cx+Du (2.6)

where x is the state, u is the control input, A, B, C, andD are state-space matrices. For the linear flexible pendulum
system, the state and output are defined

x⊤ =
[
xc α γ ẋc α̇ γ̇

]
and

y⊤ =
[
x1 x2 x3

]
.

After linearizing the nonlinear equations of motion about the zero angle (balanced) position, and substituting the state
given in Equation 2.1.4, we obtain the state-space matrices presented in the FLEXPEN.mws MapleTM worksheet,
or the HTML equivalent.

Note: The velocities of the servo and pendulum angles can be computed in the digital controller, e.g., by taking the
derivative and filtering the result though a high-pass filter.

2.2 Control

In Section 2.1, we found a linear state-state space model that represents the Flexible Pendulum system. This
model is used to investigate the stability properties of the system in Section 2.2.1. In Section 2.2.2, the notion of
controllability is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the
control gain and is discussed in Section 2.2.3. Lastly, Section 2.2.4 describes the state-feedback control used to
control the servo position while minimizing link deflection.

2.2.1 Stability

The stability of a system can be determined from its poles ([5]):

• Stable systems have poles only in the left-hand plane.

• Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

• Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of
the system can be found using

det (sI −A) = 0 (2.7)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.2 Controllability

If the control input, u, of a system can take each state variable, xi where i = 1 . . . n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([5]).
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Rank Test The system is controllable if the rank of its controllability matrix

T =
[
B AB A2B . . . AnB

]
(2.8)

equals the number of states in the system,
rank(T ) = n. (2.9)

2.2.3 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.5, find a control input u that minimizes the cost function

J =

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) dt, (2.10)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law u = −Kx, the state-space in Equation 2.5 becomes

ẋ = Ax+B(−Kx)

= (A−BK)x

2.2.4 Feedback Control

The feedback control loop that in Figure 2.2 is designed to control the position of the IP02 linear cart while balancing
the rigid and flexible pendulums.

The reference state is defined
xd =

[
0 0 0 0 0 0

]
The controller is therefore

u = −Kx, (2.11)

which is the controller used in the LQR algorithm.

Figure 2.2: State-feedback control loop

To eliminate linear cart regulation error, we can augment the system to include an integrator such that

η̇ =

[
A 0
1 0

]
η +

[
B
0

]
u
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where A and B are the state-space matrices defined in Section 2.1.4 and the states are

η⊤ =
[
xc α γ ẋc α̇ γ̇

∫
(xc)dt

]
This introduces the integration terms η7(t) =

∫
(xc) dt to the feedback controller

u = −K(η),

to help compensate for unmodeled dynamics in the actual system that cause the cart to drift from its desired postiion.
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3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the VI shown in Figure 3.1 to simulate the closed-loop control of the Flexible Pendulum
system. The system is simulated using the linear model summarized in Section 2.1. The VI uses the state-feedback
control described in Section 2.2.4. The feedback gain K is found using the LQR command from the Control Design
and Simulation Toolkit (LQR is described briefly in Section 2.2.3). The goal is to make sure the gain used successfully
stabilizes the system (i.e., keeps it balanced), and does not saturate the dc motor.

Figure 3.1: VI used to simulate Flexible Pendulum.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the system:

1. Open and run FLEXPEN Control Design.vi as described in Section 4. Make sure you choose your model file
using the Model Path control. The model file is generated using the FLEXPEN Modeling VI by entering the
state space model and exporting the resultant model file.
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2. By default, the Q matrix is sent to identity matrix. Set the LQR weighting matrices to

Q =



50 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 10 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0.5


and

R = 1.

3. This automatically generates the gain

K =
[
−7.92 43.69 10.87 −13.43 7.22 1.82 −0.71

]
.

LQR Tuning: When tuning the LQR, we start with the identity matrix. To put more emphasis on the response
of the linear cart, we set the cart position gain Q(1, 1) = 50, and the derivative term Q(4, 4) = 10. The last
diagonal element, Q(7, 7) is set to 0.5 to generate an integral gain for the linear cart to keep it centered on the
track.

4. Run the VI. The scopes should be displaying responses similar to Figure 3.2.

Figure 3.2: Simulated closed-loop response.
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5. Click on the STOP button to stop running the VI.

3.1.2 Analysis

As shown by the response in Figure 3.2, the pendulums maintain their balanced positions despite the applied 50
mm cart position disturbance. Further analysis can be performed using the Graph Palette.

3.2 Implementation

The FLEXPEN Balance Control VI shown in Figure 3.3 is used to perform the balance control on the FLEXPEN.
The VI contains Quanser Rapid Control Prototyping Toolkitrblocks that interface with the dc motor and sensors of
the FLEXPEN system.

Figure 3.3: VI used to run controller on the FLEXPEN.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:

1. Make sure gain K is set to the gain you found and simulated in Section 3.1.

2. Make sure that the cart is close to the centre of the track and the pendulums are completely still.

3. Check that the State Feedback switch is set to Full-State.

4. Run the VI.

5. Once the controller is running, slowly raise the pendulums counter-clockwise (CCW) to their upright vertical
position. You should feel the motor voltage kick-in when it is within the range where the balance control
engages. The scopes should be displaying responses similar to Figure 3.4.
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Note: Once the controller has engaged, do not attempt to manually lower the pendulums. If the pendulums
or carts move outside of a safe workspace, the system watchdog should halt the controller automatically.

Figure 3.4: Typical response when balancing the FLEXPEN system

6. To stop the experiment, click on the Stop button butmake sure you catch the pendulums before they swing
down.

3.2.2 Analysis

An example of the balance control response is shown in Figure 3.5.
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Figure 3.5: FLEXPEN balance control response

Due to the friction in the system, the IP02 servo oscillates back-and-forth approximately ±70 mm to balance the
pendulum. The pendulum angle does not exceed 3 degrees and the flexible link angle does not exceed 5 degrees
when balanced. Because of the integrator, the IP02 cart eventually returns to the initial 0 mm setpoint.

3.2.3 Partial-State Feedback

1. Make sure that the cart is close to the centre of the track and the pendulums are completely still.

2. Check that the State Feedback switch is set to Full-State.

3. Run the VI.

FLEXPEN Laboratory Guide v 1.0



4. Once the controller is running, slowly raise the pendulums counter-clockwise (CCW) to their upright vertical
position. You should feel the motor voltage kick-in when it is within the range where the balance control
engages.

5. Once the response of the pendulums is stable, set the State Feedback switch to Partial-State.

6. Introduce a slight disturbance into the pendulums and observe the response of the system. The system should
begin to oscillate with an increasing amplitude as shown in Figure 3.6.

7. Do not leave the switch on partial-state feedback for more than a few seconds. Once you have observed
the system response, set the manual switch back to full-state feedback.

Figure 3.6: Typical partial-state feedback response when balancing the FLEXPEN system

8. Observe the response of the system once full-state feedback is re-engaged (shown in Figure 3.6 at 34 sec-
onds).

9. To stop the experiment, click on the Stop button butmake sure you catch the pendulums before they swing
down.

3.2.4 Analysis

An example of the closed-loop balance response under partial-state feedback is shown in Figure 3.5.
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Figure 3.7: Typical partial-state feedback response when balancing the FLEXPEN system

If the flexible link is moving ''in-synch'' with the stiff pendulum then the system may remain stable even when using
partial-state feedback. However when a disturbance is applied (shown in Figure 3.7 at 29 seconds), the stiff and
flexible pendulum angles begin to oscillate with increasing amplitude as shown in Figure 3.7. Though stability can
sometimes be restored under partial-state feedback, the system response is far less robust than when full-state
feedback is engaged since the flexible link angle is not being fed back into the control system. Once the angle of
the flexible pendulum is reintroduced (shown in Figure 3.7 at 34 seconds), the oscillations in the cart position and
stiff pendulum angle are damped out quite quickly.
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4 SYSTEM REQUIREMENTS
Required Software

Make sure LabVIEWTM is installed with the following required add-ons:

1. LabVIEWTM

2. NI-DAQmx

3. NI LabVIEWTM Control Design and Simulation Module

4. NI LabVIEWTM MathScript RT Module

5. Quanser Rapid Control Prototyping Toolkitr

Note: Make sure the Quanser Rapid Control Prototyping (RCP) Toolkit is installed after LabVIEW. See the RCP
Toolkit Quick Start Guide for more information.

Required Hardware

• Data acquisition (DAQ) device with 2x encoder inputs and that is compatible with Quanser Rapid Control
Prototyping Toolkitr.

• Quanser IP02 linear servo.

• Quanser Flexible Pendulum (positioned underneath the IP02).

• Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

• LabVIEWTM is installed on your PC.

• DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the Analog
Loopback Demo).

• Flexible Pendulum and amplifier are connected to your DAQ board as described its User Manual [3].
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4.1 Overview of Files

File Name Description
Flexible Pendulum User Manual.pdf Thismanual describes the hardware of the FLEXPEN sys-

tem and explains how to setup and wire the system for the
experiments.

Flexible Pendulum Laboratory Man-
ual.pdf

This document demonstrates how to obtain the linear
state-space model of the system, simulate the closed-loop
system, and implement controllers on the FLEXPEN plant
using LabVIEWTM .

FLEXPEN Project.lvproj LabVIEW project that contains all the VIs required for the
lab.

FLEXPEN Modeling.vi VI used to generate the linear state-space model of the
FLEXPEN system.

FLEXPEN Control Design.vi VI used to design the LQR state-feedback gain and simu-
late the FLEXPEN system.

FLEXPEN Balance Control.vi VI that implements the state-feedback control on the
FLEXPEN system.

FLEXPEN.mws Maple worksheet used to develop the model for the FLEX-
PEN experiment. Waterloo Maple 9, or a later release, is
required to open, modify, and execute this file.

FLEXPEN.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 9 installed. No modifications to the equations
can be performed when in this format.

Table 4.1: Files supplied with the FLEXPEN

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the modeling and control design VIs must must be
configured.

Figure 4.1: LabVIEW Flexible Pendu-
lum Project

Follow these steps:

1. Load LabVIEWTM .

2. Open the FLEXPEN Project.lvproj LabVIEW project, shown in Figure
4.1.

3. Open the FLEXPEN Modeling.vi shown in Figure 4.2.

4. The pendulum and IP02 parameters are already set, by default. Run
the VI to generate the linear state-space model.

5. In Model Name, enter the name of the model you and click on OK.
This will save the state-space model under the folder Model Files.
You can close this VI now.

6. Open the FLEXPEN Control Design VI, shown in Figure 3.1.

7. Using the File Path control, select the model file.

8. Run the VI. The state-space model should load. You are now ready
to design your LQR control and simulate the closed-loop response.
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Figure 4.2: Flexible Pendulum Modeling VI

4.3 Setup for Running on FLEXPEN

Before performing the in-lab exercises in Section 3.2, the FLEXPEN system and the FLEXPEN Balance Control.vi
must be configured properly.

Follow these steps to get the system ready for this lab:

1. Setup the IP02 with the FLEXPEN module as detailed in the FLEXPEN User Manual [3].

2. Make sure that the cart is close to the centre of the track and the pendulums are completely still.. For
more information, go to the FLEXPEN User Manual [3].

3. Open the FLEXPEN Balance Control.vi, shown in Figure 3.3.

4. Set gain K control in the VI to the value found in Section 4.2 (or another gain you want to test on the system).

5. Configure DAQ:Ensure the HIL Initialize block is configured for the DAQ device that is installed in your system.
To do this, go to the block diagram (CTRL-E) and double click on the HIL Initialize Express VI shown in Figure
4.3.

Figure 4.3: HIL Initialize Express VI

6. Under the Main tab, select the data acquisition device that is installed on your system in the Board type section.
For example, in Figure 4.4 the Q2-USB is chosen.
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Figure 4.4: Select DAQ board that will be used to control system
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